首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用海水为驱动液,研究了正渗透处理生活污水过程中的通量变化和膜污染行为.结果表明,采用分离层朝向原料液(AL-FS)的膜过滤方向可以降低膜污染程度,并获得稳定的通量.长时间(144h)的运行下膜两侧均出现不同程度的污染.膜污染分析显示支撑层的污染程度较低.但海水中的硅酸盐可能在其表面形成沉积物.相比之下,分离层形成了厚的污染层,主要是由污水中的物质如有机物、微生物、胶体类、盐类等沉积在膜表面造成,是通量降低的主要原因.正渗透膜对营养物质具有高的截留率,运行结束后海水的总有机碳、氨氮和总磷含量为2.49,2.40,0.05mg/L.说明正渗透采用海水为驱动液处理生活污水具有一定的应用前景.  相似文献   

2.
纳滤膜技术在废水深度处理中的膜污染及控制研究进展   总被引:3,自引:0,他引:3  
纳滤(Nanofiltration)膜技术是实现废水再生利用的有效途径,但膜污染是限制其推广应用的主要因素之一.本文总结了纳滤膜技术在废水深度处理过程中的膜污染研究现状,分析了膜污染分析方法研究进展,并探讨了纳滤膜污染的控制策略,最后对今后的工作重点进行了展望,以期为纳滤膜技术在不同废水深度处理过程中的膜污染调控提供参考.  相似文献   

3.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   

4.
煤化工废水反渗透处理系统的运行效果及膜污染分析   总被引:1,自引:0,他引:1  
针对煤化工废水反渗透(RO)膜处理系统夏季严重污堵的问题,本研究以实际某煤化工污水处理厂一级两段式RO系统为考察对象,分析了系统运行效能及膜污染特征,研究发现,生化段稳定地实现了有机物的削减,离子交换树脂进一步保障了产水的脱盐率,促进实现高水回收率,是煤化工废水零排放的重要保障.但对膜系统而言,脱盐及有机物去除的主要负...  相似文献   

5.
厌氧──交替好氧缺氧工艺(AAA)处理城市污水的研究   总被引:7,自引:0,他引:7  
采用厌氧-交管好氧缺氧工艺处理城市污水,在厌氧段水力停留时间为初时,COD的去除率达37.5%,污水的BOD/COD由进水的0.492上升到出水的0.557。AAA段在AP=50%,空气阀开闭周期为60min时,可以去除765%的T-N。本文对AAA段脱氛的效果进行了分析。  相似文献   

6.
Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR). Control of membrane fouling can extend the membrane life and reduce water treatment cost effectively. A pilot scale anoxic/aerobic-membrane bioreactor (A/O-MBR, 40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin, China. Impact factors including mixed liquid sludge suspension (MLSS), sludge viscosity (μup), microorganisms, extracellular polymeric substances (EPS), aeration intensity and suction/suspended time on membrane fouling and pollution control were studied. The relationships among various factors associated with membrane fouling were analyzed. Results showed that there was a positive correlation among MLSS, sludge viscosity and trans-membrane pressure (TMP). Considering water treatment efficiency and stable operation of the membrane module, MLSS of 5 g/L was suggested for the process. There was a same trend among EPS, sludge viscosity and TMP. Numbers and species of microorganisms affected membrane fouling. Either too high or too low aeration intensity was not conducive to membrane fouling control. Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process. A long suction time caused a rapid increase in membrane resistance. However, long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface. The suction/suspended time of 12 min/3 min was selected for the process. The interaction of various environmental factors and operation conditions must be considered synthetically.  相似文献   

7.
膜生物反应器处理生活污水的工艺及膜材料的选择   总被引:12,自引:4,他引:12  
介绍了膜生物反应器处理生活污水的工艺 ,结果表明 :膜生物反应器对生活污水中 CODCr、BOD5、NH3 -N、SS、E-coli、浊度的去除率分别为 87%~ 98%、88%~ 99%、89%~ 98%、1 0 0 %、1 0 0 %、98%~1 0 0 % ,实验出水水质稳定 ,宜于回用。聚丙烯膜比聚砜膜具有更好的出水量和抗污染性。  相似文献   

8.
分别采用分子量分级膜和XAD-8树脂,研究了污水厂二级出水中有机物分子量分布特征及不同分子量分布区间亲疏水有机物的相对含量,考察了分子量分布及亲疏水特性对纳滤膜透水性能的影响.结果表明,二级出水有机物中,小分子亲水性有机物含量最高,小于2k的有机物占总有机物含量的45.61%,其中亲水性物质占28.07%,疏水性物质占17.54%;不同特征的原水分别经纳滤膜过滤,分子量分布对膜污染影响较大,分子量小于30k时,分子量区间越小,比通量衰减越快,分子量大于30k时,分子量区间越大,比通量衰减越快,且分子量较小的有机物通量衰减程度大于分子量较大有机物;在分子量分布相同区间内,亲水性有机物的比通量衰减较慢,说明相同分子量时,膜对亲水性物质的截留率较低,而疏水性物质是引起膜通量衰减的主要原因.  相似文献   

9.
This study proposed a novel membrane filtration and dissolved ozone flotation integrated(MDOF) process and tested it at pilot scale. Membrane filtration in the MDOF process was operated in gravity-driven mode, and required no backwashing, flushing, or chemical cleaning. Because ozone was added in the MDOF process, ozonation, coagulation, and membrane filtration could occur in a single reactor. Moreover, in situ ozonation occurred in the MDOF process, which differs from the conventional pre-ozonation membrane filtration process. Significant enhancement of turbidity removal was further achieved through the addition of membrane filtration. Membrane fouling was mitigated in the MDOF process compared to the MDAF process. In situ ozonation in the MDOF process decreased the fluorescence intensity and transformed the high MW dissolved organics into small MW compounds. For the fouling layer, the extracellular polymeric substance(EPS) contents and cake layer morphology were analyzed. The results indicated that the contents of EPS decreased. Furthermore, a thinner and more loosely structured cake layer formed in the MDOF process. Because coagulation and ozonation occurred simultaneously in a single reactor, the generation of hydroxyl radicals was enhanced through the catalytic effect of Al-based coagulants on ozone decomposition, which further alleviated membrane fouling in the MDOF process.  相似文献   

10.
To perform a systematic survey on the occurrence and removal of micropollutants during municipal wastewater treatment, 943 semi-volatile organic chemicals in 32 wastewater samples including influents of secondary treatments, secondary effluents and final effluents(effluents of advanced treatments), which were collected from seven full-scale municipal wastewater treatment plants(MWTPs) in China, were examined by gas chromatography-mass spectrometry(GC-MS) coupled with an automated identification and quantification system with a database(AIQS-DB). In total, 196 and 145 chemicals were detected in secondary and final effluents, respectively. The majority of the total concentrations(average removal efficiency, 87.0%±5.9%) of the micropollutants were removed during secondary treatments. However, advanced treatments achieved different micropollutant removal extents from secondary effluents depending on the different treatment processes employed. Highly variable removal efficiencies of total concentrations(32.7%–99.3%) were observed among the different advanced processes. Among them,ozonation-based processes could remove 70.0%–80.9% of the total concentrations of studied micropollutants. The potentially harmful micropollutants, based on their detection frequency and concentration in secondary and final effluents, were polycyclic aromatic hydrocarbons(PAHs)(2-methylnaphthalene, fluoranthene, pyrene, naphthalene and phenanthrene), phosphorus flame retardants(tributyl phosphate(TBP), tris(2-chloroethyl)phosphate(TCEP) and tris(1,3-dichloro-2-propyl) phosphate(TDCP)), phthalates(bis(2-ethylhexyl)phthalate(DEHP)), benzothiazoles(benzothiazole,2-(methylthio)-benzothiazol, and 2(3H)-benzothiazolone) and phenol. This study indicated that the presence of considerable amounts of micropollutants in secondary effluent creates the need for suitable advanced treatment before their reuse.  相似文献   

11.
A recombinant human androgen receptor yeast assay was applied to investigate the occurrence of antiandrogens as well as the mechanism for their removal during gray wastewater and coking wastewater treatment. The membrane reactor (MBR) system for gray wastewater treatment could remove 88.0% of antiandrogenic activity exerted by weakly polar extracts and 97.3% of that by moderately strong polar extracts, but only 32.5% of that contributed by strong polar extracts. Biodegradation by microorganisms in the MBR contributed to 95.9% of the total removal. After the treatment, the concentration of antiandrogenic activity in the effluent was still 1.05 μg flutamide equivalence (FEQ)/L, 36.2% of which was due to strong polar extracts. In the anaerobic reactor, anoxic reactor, and membrane reactor system for coking wastewater treatment, the antiandrogenic activity of raw coking wastewater was 78.6 mg FEQ/L, and the effluent of the treatment system had only 0.34 mg FEQ/L. The antiandrogenic activity mainly existed in the medium strong polar and strong polar extracts. Biodegradation by microorganisms contributed to at least 89.2% of the total antiandrogenic activity removal in the system. Biodegradation was the main removal mechanism of antiandrogenic activity in both the wastewater treatment systems.  相似文献   

12.
China has been experiencing fast economic development in recent decades at the cost of serious environmental deterioration. Wastewater discharge, especially municipal wastewater discharge, and non-point pollution sources are becoming the major water pollution source and research focus. Great efforts have been made on water pollution control and a number of renovated technologies and processes for municipal wastewater treatment and reclamation as well as non-point pollution control have been developed and applied in China. This paper discusses the development and application of the appropriate technologies, including natural treatment systems, anaerobic biological treatment, biofilm reactors and wastewater reclamation technologies, for water pollution control in the country.  相似文献   

13.
As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration (UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid (HA). Various types of backwash water, including UF permeate, Milli-Q water, NaCl solution, CaCl2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na+ or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca2 + in backwash water significantly decreased the backwash efficiency. Moreover, Ca2 + played an important role in foulant removal, and the residual HA content closely related to the residual Ca2 + content. Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na+ and HA, respectively.  相似文献   

14.
为了考察缺氧滤池-膜生物反应器(AF-MBR)对海水养殖废水的处理效果,在膜生物反应器中投加聚氨酯悬浮性填料,并以独立运行的膜生物反应器作为对照.结果表明,组合反应系统的总氮去除率和总有机碳(TOC)去除率分别为92%和90%,高于对照膜生物反应器的86%和85%.并且,前置缺氧滤池和填料的投加也明显缓解了膜污染.通过对两个反应器提取的溶解性微生物产物(SMP)和细胞胞外聚合物(EPS)进行红外光谱和三维荧光光谱的测定,确定了蛋白质和多糖为主要的膜污染物质,并且膜污染物质的减少缓解了膜污染现象.  相似文献   

15.
采用中空纤维超滤膜组件构建了高负荷生物絮凝-膜反应器(HLB-MR),对其直接处理城市污水及回收有机物进行了研究.结果表明:当水力停留时间(HRT)为1.0h,固体停留时间(SRT)为0.2d时,该工艺可回收进水总COD的60.8%,据估算约有39%的进水总COD可通过中温厌氧消化转化为甲烷能源回收,有机物的甲烷转化率为活性污泥法剩余污泥的2倍以上,能实现污水中有机物的高效回收和利用;经过有机物回收后膜出水的COD能稳定保持在30mg/L左右,且出水中氮、磷营养物保有值均较高又不含固体杂质和病原体,可将其用作灌溉用水,实现水资源回用;SRT分别为0.2,0.6,1.0d时,反应器对胶体COD絮凝效率分别为81.9%、95.1%、96.8%,絮凝效率越高,膜污染越轻,良好的生物絮凝效果可有效减轻膜污染,保证工艺的稳定运行.  相似文献   

16.
The performance of combined Fenton oxidation and membrane bioreactor (MBR) process for the advanced treatment of an effluent from an integrated dyeing wastewater treatment plant was evaluated. The experimental results revealed that under the optimum Fenton oxidation conditions (initial pH 5, H 2 O 2 dosage 17 mmol/L, and Fe 2+ 1.7 mmol/L) the average total organic carbon (TOC) and color removal ratios were 39.3% and 69.5% after 35 min of reaction, respectively. Results from Zahn-Wallens Test also represented that Fenton process was effective to enhance the biodegradability of the test wastewater. As for the further purification of MBR process, TOC removal capacity was examined at different hydraulic retention times (HRT) of 10, 18 and 25 hr. Under the optimum HRT of 18 hr, the average TOC concentration and color of the final MBR effluent were 16.8 mg/L and 2 dilution time, respectively. The sludge yield coefficient was 0.13 g MLSS/g TOC and TOC degradation rate was 0.078 kg TOC/(m 3 ·day). The final effluent of MBR can meet the reuse criteria of urban recycling water-water quality standard for miscellaneous water consumption GBT18920-2002.  相似文献   

17.
Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in terms of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight (MW) fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P < 0.05) and the protein-like FDOM (P < 0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality.  相似文献   

18.
均相Fenton法处理干法腈纶废水工艺优化与分析   总被引:2,自引:0,他引:2  
采用均相Fenton法处理干法腈纶废水,并通过单因素试验和基于中心组合设计的响应面法考察了H2O2投加量、Fe2+投加量、初始pH值及反应时间的影响及其交互作用.同时,建立了以COD去除率为响应值的二次响应曲面模型,并采用方差分析对模型进行了验证.结果表明,影响COD去除效果的各因子显著性顺序依次为:Fe2+投加量>H2O2投加量>初始pH值>反应时间;Fe2+投加量与初始pH值的交互作用最为显著;反应最优组合条件为:H2O2投加量90.0mmol.L-1,Fe2+投加量30.0mmol.L-1、初始pH值3.1,反应时间113.6min,该条件下COD去除率为47.1%,与模型预测值48.5%基本一致.  相似文献   

19.
Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5 hr at unadjusted pH 3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5 mmol/L Ca2 +, active layer facing draw solution (AL-DS) and 1.5 mol/L NaCl (DS); 2. No Ca2 +, active layer-facing FS (AL-FS) and 4 mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH 3.56, and larger than the two values at pH 9.00. This manifested that, at pH 3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH 9.00, the mutual effects of OA and BSA eased the membrane fouling.  相似文献   

20.
构建了移动床生物膜反应器(MBBR)-膜生物反应器(MBR)组合工艺处理生活污水,考察了其对污染物的去除效果和膜污染情况。结果表明,MBBR-MBR对$NH_{4}^{+}$-N和COD的去除率均能达到97%以上。MBR中跨膜压随运行时间延长呈先慢速增加后快速增加的特点,活性污泥微生物胞外聚合物(EPS)和微生物代谢产物(SMP)是膜污染的重要物质,普通的化学清洗并不能使MBR膜组件恢复到新膜的水平,膜污染呈不可逆性。EPS的表观分子量分布较广泛,而SMP的表观分子量呈单峰特征,主要以小分子量物质为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号