首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
To decrease the operating cost of flue gas purification technologies based on carbon-based materials, the adsorption and regeneration performance of low-price semi-coke and activated coke were compared for SO2 and NO removal in a simulated flue gas. The functional groups of the two adsorbents before and after regeneration were characterized by a Fourier transform infrared (FTIR) spectrometer, and were quantitatively assessed using temperature programmed desorption (TPD) coupled with FTIR and acid–base titration. The results show that semi-coke had higher adsorption capacity (16.2% for SO2 and 38.6% for NO) than activated coke because of its higher content of basic functional groups and lactones. After regeneration, the adsorption performance of semi-coke decreased because the number of active functional groups decreased and the micropores increased. Semi-coke had better regeneration performance than activated coke. Semi-coke had a larger SO2 recovery of 7.2% and smaller carbon consumption of 12% compared to activated coke. The semi-coke carbon-based adsorbent could be regenerated at lower temperatures to depress the carbon consumption, because the SO2 recovery was only reduced a small amount.  相似文献   

2.
废茶活性炭脱硫脱硝性能的应用研究   总被引:1,自引:0,他引:1  
宋磊  张彬  邓文 《环境科学》2014,35(10):3674-3682
为探讨废茶活性炭对于SO2和NO脱除作用的制约因素,分别考察了材料孔径结构、石墨化程度及表面结构对其脱硫脱硝性能的影响,同时研究了其吸附机制及动力学过程.结果表明,较高的石墨化程度是影响材料脱硫性能的主要因素,微孔径较小且含氮碱性基团较高时有利于SO2的脱除;发达的中孔结构是制约NO脱除效率的关键因素,含氮碱性基团对NO的脱除具有一定的促进作用;烟气中SO2和NO共存时,材料的脱硫脱硝性能均有所降低,氧气和水蒸气的加入能够改善其脱硫脱硝效率;废茶活性炭在无水环境下对于SO2和NO的吸附作用均以物理吸附为主,水蒸气的存在促进了材料对SO2的化学吸附;通过动力学模型的拟合发现,Bangham吸附模型能够很好地描述材料脱硫脱硝的动力学过程,其R2均高于0.989,材料对于SO2和NO的吸附速率常数均随氧气和水蒸气的加入而减小.  相似文献   

3.
Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO42 −) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO42 − transformation and S gas emissions, two SO42 −-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO42 − by 51% and 61% in S1 and S2, respectively. The disappeared SO42 − was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for < 0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO42 − into undissolved form, reduced soil SO42 − by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO42 −, liming stimulates the conversion of dissolved SO42 − into undissolved form, probably due to the precipitation with calcium.  相似文献   

4.
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using MnSO4 (OMS-2-SO4) and Mn(CH3COO)2 (OMS-2-AC) as precursors. SO42 −-doped OMS-2-AC catalysts with different SO42 − concentrations were prepared next by adding (NH4)2SO4 solution into OMS-2-AC samples to investigate the effect of the anion SO42 − on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO42 − doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO42 − (SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO42 − species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO42 − species in OMS-2-SO4 samples.  相似文献   

5.
本文考察了流动态体系中,烟气主要组分(O2和水蒸汽)的含量对SO2在活性炭上吸附量的影响;研究了SO2吸附动力学。结果表明,在一定空速和吸附温度下,烟气中O2和水蒸汽含量分别为5%和8%(Ⅴ%)左右时,SO2吸附量为最大。SO2在活性炭上吸附动力学曲线很好地遵循Elovich方程;SO2吸附活化能Ea0为21.939×103J/mol以及Elovich参数,进而得出吸附活化能Ea,与吸附温度的关系。  相似文献   

6.
基于碳捕集的富氧燃煤烟气联合脱硫脱硝试验研究   总被引:1,自引:0,他引:1  
富氧燃煤烟气压缩液化CO2的高压低温工况为NO氧化为易溶于水的NO2提供了十分有利的条件.基于小型高压吸收试验装置,采用配制的富氧燃煤模拟烟气,在高压常温下进行了NO、SO2、O2与H2O的吸收反应试验.根据反应前后的气液产物分析,测定了不同组分比例与不同压力下混合气体中NO与SO2的转化率.NO氧化与吸收试验表明,NO转化为HNO3的比率随压力升高而增加,在0.5 ~2 MPa之间增加很快,在2 ~3 MPa之间增速趋丁平缓,压力达3 MPa以上时,90%以上的NO均转化为稀硝酸,且初始NO浓度越高,NO的转化率越大.混合气体中同时存在5O2与NO的联合吸收试验发现,只有少量的NO转化成了NO3-,SO2向H2SO4的转化率随压力升高而增加,初始SO2浓度越大,转化率越高.分析表明,SO2与NO同时存在时SO2先行转化为SO3,NO充当了催化剂,但SO2转化为SO3的一次转化率小于35%,反应酸液产物的多次循环能使SO2的转化率达到90%以上.建议的工艺流程中需采用两座吸收反应塔顺序脱除SO2与NO并回收稀酸溶液,有望在富氧燃煤发电捕集CO2系统中降低脱硫脱硝成本,部分地弥补富氧燃烧机组发电成本的增加.  相似文献   

7.
Batch experiments were conducted to evaluate fluoride removal by Al,Fe,and Ti-based coagulants and adsorbents,as well as the effects of coexisting ions and formation of aluminum–fluoride complexes on fluoride removal by co-precipitation with alum(Al_2(SO_4)_3·18H_2O).Aluminum sulfate was more efficient than the other coagulants for fluoride removal in the pH range between 6 and 8.Nano-crystalline TiO_2 was more effective for fluoride removal than Al and Fe hydroxides in a pH range of 3–5.Coexisting anions in water decreased the removal of fluoride in the order:phosphate(2.5 mg/L) arsenate(0.1 mg/L) bicarbonate(200 mg/L) sulfate(100 mg/L) = nitrate(100 mg/L) silicate(10 mg/L) at a pH of 6.0.The effect of silicate became more significant at pH 7.0.Calcium and magnesium improved the removal of fluoride.Zeta-potential measurements determined that the adsorption of fluoride shifted the PZC of Al(OH)_3 precipitates from 8.9 to 8.4,indicating the chemical adsorption of fluoride at the surface.The presence of fluoride in solution significantly increased the soluble aluminum concentration at pH 6.5.A Visual MINTEQ modeling study indicated that the increased aluminum solubility was caused by the formation of AlF~(2+),AlF~(+2),and AlF_3complexes.The AlF_x complexes decreased the removal of fluoride during co-precipitation with aluminum sulfate.  相似文献   

8.
A novel ferruginous active absorbent, prepared by fly ash, industrial lime and the additive Fe(VI), was introduced for synchronous abatement of binary mixtures of SO2–NOx from simulated coal-fired flue gas. The synergistic action of various factors on the absorption of SO2 and NOx was investigated. The results show that a strong synergistic effect exists between Fe(VI) dose and reaction temperature for the desulfurization. It was observed that in the denitration process, the synergy of Fe(VI) dose and Ca/(S + N) had the most significant impact on the removal of NO, followed by the synergy of Fe(VI) and reaction temperature, and then the synergy of reaction temperature and flue gas humidity. A scanning electron microscope(SEM) and an accessory X-ray energy spectrometer(EDS)were used to observe the surface characteristics of the raw and spent absorbent as well as fly ash. A reaction mechanism was proposed based on chemical analysis of sulfur and nitrogen species concentrations in the spent absorbent. The Gibbs free energy, equilibrium constants and partial pressures of the SO2–NOx binary system were determined by thermodynamics.  相似文献   

9.
A novel ferruginous active absorbent, prepared by fly ash, industrial lime and the additive Fe(VI), was introduced for synchronous abatement of binary mixtures of SO2–NOx from simulated coal-fired flue gas. The synergistic action of various factors on the absorption of SO2 and NOx was investigated. The results show that a strong synergistic effect exists between Fe(VI) dose and reaction temperature for the desulfurization. It was observed that in the denitration process, the synergy of Fe(VI) dose and Ca/(S + N) had the most significant impact on the removal of NO, followed by the synergy of Fe(VI) and reaction temperature, and then the synergy of reaction temperature and flue gas humidity. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer (EDS) were used to observe the surface characteristics of the raw and spent absorbent as well as fly ash. A reaction mechanism was proposed based on chemical analysis of sulfur and nitrogen species concentrations in the spent absorbent. The Gibbs free energy, equilibrium constants and partial pressures of the SO2–NOx binary system were determined by thermodynamics.  相似文献   

10.
微波辐照技术在活性炭脱硫中的应用   总被引:9,自引:0,他引:9  
采用微波辐照技术对煤质活性炭进行加热,研究了不同的微波功率、辐照时间和样品粒径等因素对活性炭脱硫性能的影响,找出了合适的处理条件.同时,将改性活性炭和原炭对SO2的吸附和催化性能做了比较,说明了微波辐照活性炭具有比原炭更好的吸附和催化性能.采用氮气吸附仪、pH精密酸度计、XPS、元素分析等测试了改性活性炭和原炭的物理化学性能:活性炭的表面积和孔结构没有显著改变;活性炭的脱硫性能与活性炭的pH值有着一定的关系;具有较低氧含量和较高的氮含量的活性炭具有较好的脱硫活性;CH2 和 CO(烯酮基)官能团含量相对增加有利于SO2的吸附.  相似文献   

11.
酸碱改性活性炭及其对甲苯吸附的影响   总被引:6,自引:1,他引:5  
刘寒冰  杨兵  薛南冬 《环境科学》2016,37(9):3670-3678
分别用酸溶液(H_2SO_4、HNO_3、H_3PO_4)和碱溶液(NaOH或NH_3·H_2O)浸渍方法对活性炭进行改性,并对酸改性活性炭进行碱溶液二次改性处理,通过表征改性前后活性炭BET比表面积、孔结构、表面官能团等理化特征和测定其对甲苯蒸气的饱和吸附量,研究了影响活性炭吸附甲苯蒸气的关键因素.结果表明,酸改性使BET比表面积、微孔面积、微孔容积减少、表面酸性官能团增加,而碱改性呈现相反的理化特征变化.活性炭理化特征的变化可能与改性溶液的酸碱性、氧化还原性有关,并且这种相反的变化直接关系到活性炭对甲苯蒸气的吸附.3种酸改性的活性炭对甲苯蒸气饱和吸附量相对于原活性炭减少9.6%~20.0%,而两种碱改性的活性炭则增加29.2%~39.2%.相关性分析显示甲苯吸附量与BET比表面积、微孔面积、微孔容积正相关,而与表面酸性官能团负相关;多元回归分析进一步表明微孔容积和酸性官能团数量是影响活性炭甲苯吸附的关键因素.二次改性活性炭甲苯吸附量与表面含氧酸性官能团拟合结果则表明,—COOH、C=O和—OH都对活性炭甲苯吸附能力有影响,其中—COOH影响较大.研究结果表明有效提高活性炭对甲苯吸附能力,改性宜以提高活性炭微孔容积和减小活性炭表面酸性官能团数量,特别是—COOH数量为目标导向.  相似文献   

12.
V2O5/AC催化剂脱除烟气中SO2的微观动力学研究   总被引:1,自引:1,他引:0  
利用热重分析仪对V2O3/AC脱除SO2的微观动力学进行了研究,考察了催化剂V2O5的含量[w(V2O5)]、反应物SO2和H2O的浓度[ψ(SO2)和ψ(H2O)]及反应温度对催化剂增重分率的影响,并采用微孔填充模型描述V2O5/AC的脱硫行为.模型研究表明:V2O5/AC脱除SO2反应速率由吸附-催化剂表面化学反应控制,SO2和H2O的吸附可用Langmuir-Hinshelwood模型分析.将活性组分表面分率和V2O5/AC的微孔孔容随反应的变化用参数n表示,n类似于反应级数,以表示二者对反应的影响程度.  相似文献   

13.
Surface water methane (CH4) and nitrous oxide (N2O) concentrations and fluxes were investigated in two subtropical coastal embayments (Bramble Bay and Deception Bay, which are part of the greater Moreton Bay, Australia). Measurements were done at 23 stations in seven campaigns covering different seasons during 2010–2012. Water–air fluxes were estimated using the Thin Boundary Layer approach with a combination of wind and currents-based models for the estimation of the gas transfer velocities. The two bays were strong sources of both CH4 and N2O with no significant differences in the degree of saturation of both gases between them during all measurement campaigns. Both CH4 and N2O concentrations had strong temporal but minimal spatial variability in both bays. During the seven seasons, CH4 varied between 500% and 4000% saturation while N2O varied between 128 and 255% in the two bays. Average seasonal CH4 fluxes for the two bays varied between 0.5 ± 0.2 and 6.0 ± 1.5 mg CH4/(m2·day) while N2O varied between 0.4 ± 0.1 and 1.6 ± 0.6 mg N2O/(m2·day). Weighted emissions (t CO2-e) were 63%–90% N2O dominated implying that a reduction in N2O inputs and/or nitrogen availability in the bays may significantly reduce the bays' greenhouse gas (GHG) budget. Emissions data for tropical and subtropical systems is still scarce. This work found subtropical bays to be significant aquatic sources of both CH4 and N2O and puts the estimated fluxes into the global context with measurements done from other climatic regions.  相似文献   

14.
The oxidation of SO2 is commonly regarded as a major driver for new particle formation (NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term (duration > 3 hr) and short-term (duration <1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates (J30) showed a moderate correlation with the concentration of sulfuric acid ([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events (Category I) (R2 = 0.66). The exponent in the fitting line of J30 ~ [H2SO4]n in these events was 1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events, leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events (Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of >10 nm new particles.  相似文献   

15.
The oxidation of SO2 is commonly regarded as a major driver for new particle formation (NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term (duration > 3 hr) and short-term (duration < 1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates (J30) showed a moderate correlation with the concentration of sulfuric acid ([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events (Category I) (R2 = 0.66). The exponent in the fitting line of J30 ~ [H2SO4]n in these events was 1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events, leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events (Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of > 10 nm new particles.  相似文献   

16.
Wet scrubbing combined with ozone oxidation has become a promising technology for simultaneous removal of SO2 and NOx in exhaust gas. In this paper, a new 20-species, 76-step detailed kinetic mechanism was proposed between O3 and NOx. The concentration of N2O5 was measured using an in-situ IR spectrometer. The numerical evaluation results kept good pace with both the public experiment results and our experiment results. Key reaction parameters for the generation of NO2 and N2O5 during the NO ozonation process were investigated by a numerical simulation method. The effect of temperature on producing NO2 was found to be negligible. To produce NO2, the optimal residence time was 1.25 sec and the molar ratio of O3/NO about 1. For the generation of N2O5, the residence time should be about 8 sec while the temperature of the exhaust gas should be strictly controlled and the molar ratio of O3/NO about 1.75. This study provided detailed investigations on the reaction parameters of ozonation of NOx by a numerical simulation method, and the results obtained should be helpful for the design and optimization of ozone oxidation combined with the wet flue gas desulfurization methods (WFGD) method for the removal of NOx.  相似文献   

17.
The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactionswere dependent on the specific surface area and functional groups of the resin. The adsorption isothermfittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO42- suppressed the adsorption amount, butwith different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior andmechanismof pharmaceuticals onmagnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters.  相似文献   

18.
The influence of the various preparation methods of Cu-SAPO-34 nanocatalysts on the selective catalytic reduction of NO with NH3 under excess oxygen was studied. Cu-SAPO-34 nanocatalysts were prepared by using four techniques: conventional impregnation (IM), ultrasound-enhanced impregnation (UIM), conventional deposition precipitation (DP) using NaOH and homogeneous deposition precipitation (HDP) using urea. These catalysts were characterized in detail by various techniques such as N2-sorption, XRD, TEM, H2-TPR, NH3-TPD and XPS to understand the catalyst structure, the nature and the dispersed state of the copper species, and the acid sites for NH3 adsorption. All of the nanocatalysts showed high activities for NO removal. However, the activities were different and followed the sequence of Cu-SAPO-34 (UIM) > Cu-SAPO-34 (HDP) > Cu-SAPO-34 (IM) > Cu-SAPO-34 (DP). Based on the obtained results, it was concluded that the NO conversion on Cu-SAPO-34 nanocatalysts was mainly related to the high reducibility of the isolated Cu2 + ions and CuO species, the number of the acid sites and the dispersion of CuO species on SAPO-34.  相似文献   

19.
采用电晕放电与液相络合催化协同同时去除烟气中SO2和NO,电压、水流量、乙二胺合钴浓度、pH、SO2和NO初始浓度以及气流量对同时去除SO2和NO效率的影响进行了实验研究.结果表明:NO去除率随着放电电压、水流量、乙二胺合钴浓度、pH的增加而增加,而随SO2和NO初始浓度、烟气流量的增大而减小;SO2去除率也随放电电压,水流量的增加而增加,随烟气流量的增加而下降,但溶液pH,SO2和NO初始浓度和乙二胺合钴浓度对其影响很小.溶液中加入Mn2+和尿素能分别增强SO2和NO的去除效果.最佳条件为:电压25 kV、水流量80 L·h-1,乙二胺合钴浓度0.02 mol·L-1,烟气流量1.0 m3·h-1、尿素浓度0.02 mol·L-1,Mn2+浓度为0.02 mol·L-1时,NO和SO2去除率分别可达68%和94%,对应能量消耗分别为22.2 g·k Wh-1和75.2 g·k Wh-1.  相似文献   

20.
Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing various anions were investigated. The influences of anion concentration and valence on the aggregation size, zeta potential and aggregation kinetics were individually investigated. Results showed that the zeta potential decreased from 19.8 to − 41.4 mV when PO43 − concentration was increased from 0 to 50 mg/L, while the corresponding average size of nano-TiO2 particles decreased from 613.2 to 540.3 nm. Both SO42 − and NO3 enhanced aggregation of nano-TiO2 in solution. As SO42 − concentration was increased from 0 to 500 mg/L, the zeta potential decreased from 19.8 to 1.4 mV, and aggregate sizes increased from 613.2 to 961.3 nm. The trend for NO3 fluctuation was similar to that for SO42 − although the range of variation for NO3 was relatively narrow. SO42 − and NO3 accelerated the aggregation rapidly, while PO43 − did so slowly. These findings facilitate the understanding of aggregation and dispersion mechanisms of nano-TiO2 in aqueous solutions in the presence of anions of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号