首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用不锈钢金属丝阳极构建了管状单室无质子交换膜空气阴极微生物燃料电池(MFC),并以葡萄糖为唯一电子供体,研究了该MFC的性能. 分别以含葡萄糖、葡萄糖+硝酸钾、葡萄糖+硫酸钠、葡萄糖+氯化铁的培养液注入MFC,分析和检测MFC外接电阻上的电压与各底物的起止浓度. 结果表明,MFC室内的电子受体氧化还原势越高,对固体电极接受和传输电子的影响越大,固体电极接受电子的能力介于NO3-和SO42-之间,接近Fe3+.   相似文献   

2.
This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell(UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand(COD) reduction and power generation,including the increase of KCl concentration(MFC1) and COD concentration(MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC.Despite the COD reduction was up to 96%, the power output remained constrained.  相似文献   

3.
两类微生物燃料电池治理硝酸盐废水的实验研究   总被引:6,自引:2,他引:4  
采用二氧化铅阴极单室微生物燃料电池(MFC)和双室MFC,以葡萄糖为唯一电子供体,系统研究了两类微生物燃料电池的产电性能和去除硝酸盐的情况.结果表明,双室MFC闭合后,阳极室降解葡萄糖产生的电子可通过外电路传递到阴极,在生物的作用下,NO3--N得到电子被还原,平均反硝化速率达3.77 mg·L-1·d-1.双室MFC...  相似文献   

4.
本文构建了2.0L具有微生物隔膜的模块化生物阴极微生物燃料电池(MFC),以实际生活污水为底物,在连续流运行模式中,系统考察了微生物隔膜(MS)在MFC长期运行过程中的功能特征.结果表明:发育成熟的微生物隔膜可以稳定维持MFC阴阳极室间的溶解氧(DO)浓度梯度,使阳极室平均DO浓度低于0.5mg/L,同时使完全混合的阴极室COD浓度低于50mg/L,避免了电解液性质对于电极反应的抑制.微生物隔膜可以实现离子的跨隔膜迁移,进而平衡阴阳极室间的pH值;阴阳极室间存在的跨隔膜离子梯度意味着微生物隔膜完全分隔了两极室内不同的微生物代谢类型,阴极快速的好氧代谢可能导致了阴极室离子强度的降低.微生物隔膜对于MFC中COD和DO梯度的保持以及pH值的平衡起到了决定性作用,这将严格保证MFC的正常运行.同时,本文论述了在面向规模化应用的MFC中装配微生物隔膜的巨大技术与经济优势,综合评价了微生物隔膜的效能特征,为进一步推广面向实际废水处理的微生物电化学设备提供了技术支撑.  相似文献   

5.
The aim of this study is to investigate conversion of nitrogen and COD in enriched paddy soil by nitrification coupled with anammox process in a dual chamber bioelectrochemical system. The paddy soil was enriched for denitrification coupled with anammox by microbial consortia and was acclimatized in the cathodic chamber of microbial fuel cells(MFCs). The bioelectrochemical systems were treated with different ammonium concentrations in the cathodic chamber: the MFC with low concentration ammonium...  相似文献   

6.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

7.
基质COD浓度对单室微生物电解池产甲烷的影响   总被引:1,自引:0,他引:1  
单室微生物电解池(microbial electrolysis cells,MEC)产甲烷过程中,底物COD浓度可同时影响阳极和阴极微生物的活性.为了探究COD浓度的影响,构建生物阴极型单室MEC,比较COD为700、1 000、1 350 mg·L-1情形下产甲烷速率和COD去除量随外加电压的变化规律,并计算MEC的能量效益.结果表明,随着COD的增加,产甲烷速率和COD去除量均呈增大趋势.随着外加电压的升高(0.3~0.7 V),低COD条件下MEC的产甲烷速率呈增大趋势,而在中、高COD条件下,产甲烷速率随着外加电压的升高先增大后减小;COD去除量的变化规律与产甲烷速率一致.当外加电压为0.5 V时,阴极电势降至最低值(-0.694±0.001)V,有利于产甲烷菌的富集,从而获得最高的产甲烷速率和能量回收率(约42.8%).COD浓度1 000mg·L-1和外加电压0.5 V时,MEC可获得最大的能量收益0.44 k J±0.09 k J(约1 450 k J·m-3).最终结果表明,MEC可利用低浓度COD废水生产甲烷,并且可获得正的能量效益,这为废水中化学能量的回收利用提供了新的研究思路.  相似文献   

8.
微生物电解产氢是在微生物燃料电池的基础上发展而来的一种新的有潜力的产氢技术。将原有的微生物燃料电池进行适当改装,使其处于厌氧环境中,另外再加一个外加电压,从而使电池的阴极反应变成电子与质子的反应,产生氢气。微生物电解产氢技术的外加电压远低于电解水产氢技术所需的电压,产氢效率也比微生物发酵产氢高,且能将有机物彻底氧化,极大地提高了能源利用率。目前,国外已有研究将该技术应用于城市生活污水、养猪废水等,实现了废水的资源化利用。文章简述了微生物电解产氢的机理,归纳了其系统构成,并结合该技术在微生物、阳极、阴极和膜等方面的发展现状对其应用前景及发展方向进行了探讨。  相似文献   

9.
短臂型空气阴极微生物燃料电池产电特性研究   总被引:1,自引:1,他引:0  
郭坤  李顶杰  李浩然  杜竹玮 《环境科学》2009,30(10):3082-3088
用夹子将质子交换膜和载铂量为0.2 mg/cm2碳纸固定在阳极室的短臂端口构成短臂型空气阴极微生物燃料电池.利用污泥电池从厌氧消化污泥中富集产电菌于石墨棒表面,循环伏安法检测发现这些微生物具有电化学活性.将富集好的石墨棒作为阳极用于短臂型空气阴极微生物燃料电池,以醋酸钠为底物时该电池的最大功率密度为738 mW/m2,内阻为280Ω,开路电压为741 mV.连续向阳极室通氮气和去掉质子交换膜可分别将电池的最大功率密度提高到745 mW/m2和759 mW/m2,当两者同时作用时最大功率密度可达到922 mW/m2,而这3种条件下电池的内阻仍保持在280Ω左右.当底物浓度在12.62~100.96 mg/L、外电阻为510Ω时,电池的最大输出电压和底物浓度之间存在明显的线性关系(R2=0.99).当底物浓度高于100.96 mg/L时,电池的最大输出电压不再增大并保持在302 mV(外电阻为510Ω).然而,电池的库仑效率则随着底物浓度的提高而提高,从31.83%逐渐增大到45.03%.  相似文献   

10.
微生物燃料电池改性阳极处理PTA废水   总被引:1,自引:1,他引:0  
探讨了不同改性阳极对微生物燃料电池(microbial fuel cell,MFC)产电性能及其对MFC处理难降解废水能力的影响.以单室空气阴极为基础,利用0.1 g电气石、质量分数75%二氧化锰/埃洛石纳米管(manganese bioxide/halloysite nanotube,MnO_2/HNT)和多壁碳纳米管-羧基(multi-walled carbon nanotube-carboxyl,MWCNT-COOH)对MFC阳极进行修饰.结果表明,不同改性阳极的MFC对含精对苯二甲酸(purified terephthalic acid,PTA)废水的去除率均高于70%,且化学需氧量(chemical oxygen demand,COD)去除率在79%以上.相较于其他几种改性阳极,以MWCNT-COOH改性材料作阳极的MFC产生的最大输出电压最高,获得的最大功率密度最高,分别为529 mV和252.73 mW·m~(-2).  相似文献   

11.
Pd-Fe/石墨烯多功能催化阴极降解4-氯酚机制研究   总被引:1,自引:1,他引:0  
祁文智  王凡  王辉  施钦  逄磊  卞兆勇 《环境科学》2015,36(6):2168-2174
制备出Pd-Fe/石墨烯多功能催化阴极,与Ti/Ir O2/Ru O2阳极、有机涤纶滤布构成隔膜电解体系,将阴极催化加氢脱氯作用和阴阳极氧化作用耦合起来对含4-氯酚的有机废水进行降解,采用TOC仪、紫外扫描、高效液相色谱、离子色谱分析方法研究其降解效果及反应历程.结果表明,在最佳反应条件下,Pd-Fe/石墨烯催化体系阴阳极室中4-氯酚转化率分别为98.1%和95.1%,优于Pd/石墨烯催化体系阴阳极室的93.3%和91.4%.Pd-Fe/石墨烯催化体系脱氯效果高于95%,表明双金属催化剂具有更强的析氢能力.在阴阳极的协同作用下,反应120 min时4-氯酚被完全转化.通过阴极加氢脱氯作用,4-氯酚被还原成苯酚.随后苯酚在阴阳极的共同氧化作用下,被氧化生成对二苯酚、苯醌等中间产物,继而被氧化为小分子有机酸,最后被矿化为CO2和H2O,据此提出了4-氯酚降解的可能历程.  相似文献   

12.
采用小球藻作为双室光合藻微生物燃料电池(PAMFC)的阴极以提供电子受体,实现污水处理和能量回收的双重目的.研究生物阴极接种方式和光照条件对生物产电性能和餐厨沼液废水处理效果的影响,并通过循环伏安法(CV)研究PAMFC电极极化和产电机制.结果表明:微藻生物膜阴极PAMFC污染物去除和产电性能表现优于对照组,COD,TN和TP去除率最高可达82.4%,54.5%和82.3%,开路电压和最大功率密度分别达603.0mV和41.5mW/m2.污染物去除主要在阳极发生,但阴极能够还原去除来自阳极的铵根离子,且阴极反应产生氧气作为阳极的电子受体,增大系统电流,提高了阳极处理效率.持续光照下,PAMFC产电性能和污染物去除率略高于间歇光照,但是间歇光照可以避免阳极基质不足时阴极光饱和和氧饱和情况,更符合连续运行要求.PAMFC阴极的CV曲线显示,具有微藻阴极的实验组输出电压更大,还原峰更高,功率密度更强,但需注意长期运行时微藻生物膜增厚影响氧传质效率的问题.  相似文献   

13.
采用小球藻作为双室光合藻微生物燃料电池(PAMFC)的阴极以提供电子受体,实现污水处理和能量回收的双重目的.研究生物阴极接种方式和光照条件对生物产电性能和餐厨沼液废水处理效果的影响,并通过循环伏安法(CV)研究PAMFC电极极化和产电机制.结果表明:微藻生物膜阴极PAMFC污染物去除和产电性能表现优于对照组,COD,TN和TP去除率最高可达82.4%,54.5%和82.3%,开路电压和最大功率密度分别达603.0mV和41.5mW/m2.污染物去除主要在阳极发生,但阴极能够还原去除来自阳极的铵根离子,且阴极反应产生氧气作为阳极的电子受体,增大系统电流,提高了阳极处理效率.持续光照下,PAMFC产电性能和污染物去除率略高于间歇光照,但是间歇光照可以避免阳极基质不足时阴极光饱和和氧饱和情况,更符合连续运行要求.PAMFC阴极的CV曲线显示,具有微藻阴极的实验组输出电压更大,还原峰更高,功率密度更强,但需注意长期运行时微藻生物膜增厚影响氧传质效率的问题.  相似文献   

14.
徐杰  刘维平 《中国环境科学》2021,40(10):4378-4384
以无水氯化铁为氧化剂,碳纸为基板,通过化学氧化法制备聚吡咯/二氧化钛(PPy/TiO2)光电阴极,采用XRD、IR、SEM对光催化材料进行表征.以碳纸为阳极;碳纸、TiO2改性碳纸和PPy/TiO2改性碳纸为阴极,构建双室微生物燃料电池(MFC).在光照条件下,研究了MFC废水处理效果、产电性能及阴极钴酸锂的浸出情况.结果表明:PPy/TiO2改性碳纸最大功率密度为10425.7mW/m2,分别是碳纸和TiO2改性碳纸的1.97和1.86倍;PPy/TiO2改性碳纸阴极Co(Ⅱ)浸出率为47.8%,分别是碳纸和TiO2改性碳纸的1.87和1.76倍.  相似文献   

15.
徐杰  刘维平 《中国环境科学》2020,40(10):4378-4384
以无水氯化铁为氧化剂,碳纸为基板,通过化学氧化法制备聚吡咯/二氧化钛(PPy/TiO2)光电阴极,采用XRD、IR、SEM对光催化材料进行表征.以碳纸为阳极;碳纸、TiO2改性碳纸和PPy/TiO2改性碳纸为阴极,构建双室微生物燃料电池(MFC).在光照条件下,研究了MFC废水处理效果、产电性能及阴极钴酸锂的浸出情况.结果表明:PPy/TiO2改性碳纸最大功率密度为10425.7mW/m2,分别是碳纸和TiO2改性碳纸的1.97和1.86倍;PPy/TiO2改性碳纸阴极Co(Ⅱ)浸出率为47.8%,分别是碳纸和TiO2改性碳纸的1.87和1.76倍.  相似文献   

16.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果.  相似文献   

17.
构建一种新型的三室微生物燃料电池(microbial fuel cells,MFCs)对重金属Cu污染的土壤进行修复,研究不同外阻条件下MFC的产电性能和土壤中Cu的迁移去除情况.结果表明,当外接电阻从100Ω增大到1000Ω时,三室MFC的输出电压从0.1V提高到0.4V,最大功率密度从1.10W/m3降低到0.71W/m3,且阴极极化现象也随外阻增大而更加显著.装置运行63d后,MFC外接电阻越大,近阳极土壤区的Cu的去除率越高,外阻为1000Ω的MFC近阳极土壤区的Cu去除率达到39.7%.通过改进欧共体标准(BCR)连续提取法分析重金属的形态,发现乙酸可提取态和可还原态为Cu迁移的两种主要形态.此外,土壤的性质也发生变化,pH值呈现由阳极到阴极逐渐升高的趋势,而电导率则相反.阴极电极的扫描电镜(SEM)和X射线衍射(XRD)结果也表明部分迁移到阴极的Cu(Ⅱ)被还原成单质Cu.  相似文献   

18.
考察了阳极电极材料、电极面积、电极电位、pH、阴极电子受体对甲烷生物燃料电池(MFC)产电性能的影响,并通过高通量测序、循环伏安法(CV)分析了其可能的电催化机制.结果表明,透气布/碳布(GTC)复合材料为阳极时产电性能(1251.3 mA·m-2)最佳,分别是石墨烯/中空纤维膜(G-HFM)阳极(34.8 mA·m-2)和碳布(CC)阳极(3.21 mA·m-2)的36倍和390倍;阳极面积越大,MFC启动时间越快,电流密度越大;当电极恒电位为0.1 V (vs.SHE)时,其产电能力较-0.1、+0.3及+0.5 V时高;pH=7最有利于产电;溶解氧为MFC阴极电子受体时,最大功2率密度(703.9 mW·m-2)优于铁氰化钾(457.2 mW·m-2)、空气阴极(124.2 mW·m-2)和高锰酸钾(20.7 mW·m-2)作为电子受体的MFC.阳极室微生物群落结构分析显示,电活性细菌Geobacter(17.14%)和Desulfovibrio(8.51%)为优势种,其产电机理可能是甲烷氧化菌(MethanobacteriumMethylomicrobium等)与电活性细菌协同氧化甲烷驱动MFC产电.添加NO气体、N-乙酰蛋氨酸和蛋白酶K均可明显抑制阳极生物膜的电化学活性,表明其胞外电子传递过程依赖细胞色素c、Ni-Fe氢酶及与电极接触的外膜蛋白的介导作用.  相似文献   

19.
Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohy- drogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 ± 0.37 mg/L when the applied current density was only 0.02 mA/cm^2. The oxidation of ammonium in biofilmelectrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm^2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm^2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency.  相似文献   

20.
Current methods for testing the electricity generation capacity of isolates are time- and labor-consuming. This paper presents a rapid voltage testing system of exoelectrogenic bacteria called Quickscreen, which is based on a microliter microbial fuel cell (MFC). Geobacter sulfurreducens and Shewanella baltica were used as the model exoelectrogenic bacteria; Escherichia coli that cannot generate electricity was used as a negative control. It was found that the electricity generation capacity of the isolates could be determined within about five hours by using Quickscreen, and that its time was relatively rapid compared with the time needed by using larger MFCs. A parallel, stable, and low background voltage was achieved using titanium as a current collector in the blank run. The external resistance had little impact on the blank run during the initial period. The cathode with a five-hole configuration, used to hydrate the carbon cathode, gave higher cathode potential than that with a one-hole configuration. Steady discharge and current interrupt methods showed that the anode mostly contributed to the large internal resistance of the Quickscreen system. However, the addition of graphite felt decreased the resistance from 18 to 5 kΩ. This device was proved to be useful to rapidly evaluate the electricity generation capacity of different bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号