首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   

2.
Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features.The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations.Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate.Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative to transportation network and population distribution data. The models can be used on a regional scale to quickly map the relative site suitability for a RAP or RPCC aggregate recycling operation in a particular area based on transportation network and population parameters. The results can be used to identify general areas to be further evaluated on a site-specific basis using more detailed marketplace information. As transportation or population features change due to planning or actual development, the models can be easily revised to reflect these changes.  相似文献   

3.
With the pavement industry adopting sustainable practices to align itself with the global notion of habitable environments, there has been growing use of life-cycle assessment (LCA). A hybrid LCA was used to analyze the environmental footprint of using a reclaimed asphalt pavement (RAP) content in asphalt binder mixtures. The analysis took into consideration the material, construction, and maintenance and rehabilitation phases of the pavement life cycle. The results showed significant reductions in energy consumption and greenhouse gas (GHG) emissions with an increase in RAP content. The contribution of the construction phase to the GHGs and energy consumption throughout pavement life cycle is minimal. Feedstock energy, though not consequential when comparing asphalt mixtures only, has a significant impact on total energy. Based on LCA analysis performed for various performance scenarios, breakeven performance levels were identified for mixtures with RAP. The study highlighted the importance of achieving equivalent field performance for mixtures with RAP and virgin mixtures.  相似文献   

4.
A comprehensive life cycle assessment of asphalt pavements was conducted including hot mix asphalt (HMA), warm mix asphalt (WMA) with the addition of synthetic zeolites, and asphalt mixes with reclaimed asphalt pavement (RAP). The environmental impacts associated with energy consumption and air emissions were assessed, as well as other environmental impacts resulting from the extraction and processing of minerals, binders and chemical additives; asphalt production; transportation of materials; asphalt paving; road traffic on the pavement; land use; dismantling of the pavement at the end-of-life and its landfill disposal or recycling. Monte Carlo simulations were also conducted to take into account the variability of critical input parameters. Taking into account the entire life cycle, the impacts of zeolite-based WMA pavements were almost equal to the impacts of HMA pavements with the same RAP content. The reduction in the impacts of WMA resulting from the lowering of the manufacturing temperature was offset by the greater impacts of the materials used, especially the impacts of the synthetic zeolites. Moreover, by comparing asphalt mixes with different RAP contents, it was shown that the impacts of asphalt mixes were significantly reduced when RAP was added. All endpoint impacts as well as climate change, fossil depletion and total cumulative energy demand were decreased by 13–14% by adding 15% RAP. A key advantage of WMA is the potentially greater use of RAP. Thus, the decrease in the impacts achieved by adding large amounts of RAP to WMA could turn these asphalt mixes into a good alternative to HMA in environmental terms.  相似文献   

5.
Field investigation of high-volume fly ash (HVFA) concrete in pavement construction was carried out. Test results performed on cores drilled from pavement after 270 days of concrete age showed that use of HVFA results in production of pavement concrete with improvements in: strength; moisture barrier qualities; and abrasive resistance characteristics. These improvements are brought about by the pozzolanic reaction of fly ash with the hydrates of cement that favorably changes the microstructure and interfacial transition zone in the resulting concrete.Use of high volume of fly ash in pavement concrete as partial replacement for cement is estimated to produce major energy and environmental gains and is a practice that is aimed at producing durable and sustainable concrete-based infrastructure. The use of HVFA concrete can significantly economize the construction of concrete pavements and improve the service life of transportation infrastructure.  相似文献   

6.
In this study the possibility of both chemical and combined chemical + thermal activation of municipal solid waste incinerator bottom ash was investigated. A number of chemical activators including Na2SiO3·9H2O, NaOH, Na2SO4 and CaCl2·2H2O were individually added at varying concentrations to bottom ash/Portland cement mixtures having different bottom ash contents. The effect of the selected compounds was evaluated in terms of macroscopic properties including mechanical strength and composition of cementitious materials/water slurries. The results showed that Na-based activators were not capable of improving the characteristics of the cementitious products if compared to Portland cement under both normal and accelerated curing. Conversely, the use of calcium chloride at 40 °C-curing did promote the pozzolanic properties of bottom ash, leading to UCS values of 45.5 and 60.0 MPa after 10 and 20 days, respectively, as opposed to a value of 43.6 MPa obtained after 28 days for Portland cement under normal curing conditions.  相似文献   

7.
Recycling of construction material helps save the limited landfill space. Among various types of materials, concrete waste accounts of about 50% of the total waste generation. Current off-site practices for ready mixed concrete batching plant generate a significant quantity of fresh concrete waste through over-order from construction sites. The use of concrete reclaimer is one of the methods to reclaim these concrete wastes, which separates coarse aggregate, sand and cement from fresh concrete. Although there are some concrete producers in Hong Kong providing concrete reclaimers in their plants, they are only used to flush and dilute the cement slurry from the concrete, which will still be ultimately send all to dumping areas. The reluctance of most concrete producers in reclaiming aggregate from the concrete waste is due to its high cost of treatment and lack of space around the plant. Therefore, this paper puts forth a scheme of economical considerations in recycling over-ordered concrete by concrete reclaimer. A comparative study on costs and benefits between the current practices and the proposed recycling plan is examined. The study shows that the costs of the current practices in dumping over-ordered fresh concrete waste to landfill areas are double that of the proposed aggregate recycling plan. Therefore, the adoption of concrete reclaimer in recycling the over-ordered fresh concrete can provide a cost-effective method for the construction industry and help saving the environment.  相似文献   

8.
This research investigated the possibility of using recycled asphalt concrete as surface course in airport pavement. The basic properties of recycled asphalt binder after short- and long-term aging were firstly tested and compared with those of the virgin asphalt. Then, a series of laboratory tests were performed to evaluate the performance of recycled asphalt concrete (containing 40% and 70% RAP), in which the HMA mixture without RAP was used as a control. Furthermore, an experimental pavement consisting of three sections (corresponding to 0%, 40% and 70% RAP content) was constructed to verify the laboratory test results. These results indicated that the recycled asphalt could achieve the similar properties against long-term aging as virgin asphalt. Recycled asphalt concrete containing 40% RAP could be used as surface course in airport pavement as it exhibited similar performance as control mixture both from the laboratory and experimental pavement test results. On the contrary, recycled asphalt concrete containing 70% RAP was not recommended as its fatigue property was much poorer compared with that of virgin asphalt mixture.  相似文献   

9.
A holistic evaluation of the feasibility of producing 100% recycled mixtures is presented. Eleven technologies readily available for producing 100% Reclaimed Asphalt Pavement (RAP) hot asphalt mixtures are described in the article and the complementary video (http://youtu.be/coj-e5mhHEQ). The recorded performance of 100% RAP mixtures is analyzed along with identification of typical high RAP distresses. Recommended mix design procedures and the best RAP management strategies are described. A cradle-to-gate analysis of environmental effects indicated 18 kg or 35% CO2eq savings per t of produced 100% RAP asphalt mixture compared to virgin mix, while cost analysis showed at least 50% savings in material related expenses.  相似文献   

10.
It is commonly claimed that increased use of pulverised fuel ash (pfa) and ground granulated blast-furnace slag in concrete as partial replacement for Portland cement can have economic, amenity and technical advantages. Many factors need to be considered is such an analysis and this paper is offered as a contribution to the debate of this issue, and not as a definite solution. In the long-term the major benefit may be in the savings of the energy that would otherwise be required for increased production of Portland cement.  相似文献   

11.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

12.
The timber manufacturing and power generation industry is gradually shifting towards the use of biomass such as timber processing waste for fuel and energy production and to help supplement the electrical energy demand of national electric gridlines. Though timber processing waste is a sustainable and renewable source of fuel for energy production, the thermal process of converting the aforementioned biomass into heat energy produces significant amounts of fine wood waste ash as a by-product material which, if not managed properly, may result in serious environmental and health problems. Several current researches had been carried out to incorporate wood waste ash as a cement replacement material in the production of greener concrete material and also as a sustainable means of disposal for wood waste ash. Results of the researches have indicated that wood waste ash can be effectively used as a cement replacement material for the production of structural grade concrete of acceptable strength and durability performances. This paper presents an overview of the work carried out by the use of wood waste ash as a partial replacement of cement in mortar and concrete mixes. Several aspects such as the physical and chemical properties of wood waste ash, properties of wood waste ash/OPC blended cement pastes, rheological, mechanical and the durability properties of wood waste ash/OPC concrete mix are detailed in this paper.  相似文献   

13.
Electric arc furnace dust (EAFD) is one of the by-products of steelmaking industry which has been classified as hazardous due to containing some heavy metals such as Zinc, Cobalt, Copper, Lead or Cadmium. This research aims at solving the problem of this hazardous waste by solidification/stabilization through mixing it with asphalt cement to be used for road construction. EAFD was used as an additive to the asphalt concrete mixtures with five percentages (0%, 5%, 10%, 15% and 20%) by volume of binder. Penetration, ductility, specific gravity, softening point, flash point, fire point and rotational viscosity were analyzed. It was found that while the penetration and ductility were decreasing with the increase of EAFD concentration in the binder, specific gravity, softening point, flash point, fire point and rotational viscosity were increasing. Finally it has been concluded that the results are promising for dual achievement (1) to solve an environmental problem and (2) to use the EAFD for road construction.  相似文献   

14.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

15.
Leachate metal pollutant concentrations produced from different asphalt and concrete pavement surfacing materials were measured under controlled laboratory conditions. The results showed that, in general, the concentrations of most metal pollutants were below the reporting limits. However, dissolved chromium was detected in leachate from concrete (but not asphalt) specimens and more strongly in the early-time leachate samples. As the leaching continued, the concentration of Cr decreased to below or close to the reporting limit. The source of the chromium in concrete pavement was found to be cement. The concentration of total Cr produced from leachate of different cement coming from different sources that was purchased from retail distributors ranged from 124 to 641 μg/L. This result indicates that the potential leachability of dissolved Cr from concrete pavement materials can be reduced through source control. The results also showed that the leachability of dissolved Cr in hardened pavement materials was substantially reduced. For example, the concentration of dissolved Cr measured in actual highway runoff was found to be much lower than the Cr concentration produced from leachate of both open and dense graded concrete pavement specimens under controlled laboratory study. It was concluded that pavement materials are not the source of pollutants of concern in roadway runoff; rather most pollutants in roadway surface runoff are generated from other road-use or land-use sources, or from (wet or dry) atmospheric deposition.  相似文献   

16.
总结了涪陵页岩气田开发初期钻井岩屑采用固化填埋方式处置存在占地面积大且易产生二次污染隐患等问题,因地制宜地探索钻井岩屑的资源化利用。分析了水基岩屑随钻预处理和油基岩屑热脱附技术,结合钻井岩屑的理化性质,开展了水基岩屑脱水后干渣制路基材料、制砖及水泥窑协同处置,油基岩屑灰渣制混凝土、制砖及水泥窑协同处置的探索和实践,基于环境安全、技术稳定可靠、消纳量大的原则,最终形成了涪陵页岩气田钻井岩屑资源化方案:水基岩屑"随钻预处理、水泥窑协同处置",油基岩屑"热脱附、水泥窑协同处置",实现了钻井岩屑的资源化综合利用。  相似文献   

17.
The management of the big amount of fly ash as hazardous waste from the municipal solid waste incinerator (MSWI) has encountered many problems in China. In this study, a feasibility research on MSWI fly ash utilization as partial cement substitute in cement mortars was therefore carried out. MSWI fly ash was subjected to washing process to reduce its chlorine content (from 10.16% to 1.28%). Consequently, it was used in cement mortars. Ten percent and 20% replacement of cement by washed ash showed acceptable strength properties. In TCLP and 180-day monolithic tests, the mortars with washed ash presented a little stronger heavy metal leachability, but this fell to the blank level (mortar without washed ash) with the addition of 0.25% chelate. Therefore, this method is proposed as an environment-friendly technology to achieve a satisfactory solution for MSWI fly ash management.  相似文献   

18.
The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture.  相似文献   

19.
Recycling End of Life (EOL) concrete into high-grade aggregate for new concrete is a challenging prospect for the building sector because of the competing constraints of low recycling process cost and high aggregate product quality. A further complicating factor is that, from the perspective of the environment, there is a strong societal drive to reduce bulk transport of building materials in urban environments, and to apply more in situ recycling technologies for Construction & Demolition Waste. The European C2CA project investigates a combination of smart demolition, grinding of the crushed concrete in an autogenous mill to increase the liberation of cement mortar from the surface of aggregates and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in a demonstration project involving 20,000 tons of EOL concrete from two office towers in Groningen, the Netherlands. Results show that the +4 mm recycled aggregate compares favorably with natural aggregate in terms of workability and the compressive strength of the new concrete, showing 30% higher strength after 7 days.  相似文献   

20.
Solid waste management is gaining significant importance with the ever-increasing quantities of industrial by-products and wastes. With the environmental awareness and scarcity of space for landfilling, wastes/by-product utilization has become an attractive alternative to disposal. Several industrial by-products are produced from manufacturing processes, service industries and municipal solid wastes. Some of these industrial by-products/waste materials could possibility be used in cement-based materials.Coal combustion by-products (CCBs) represent incombustible materials left after combustion of coal in conventional and/or advanced clean-coal technology combustors. These include fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) by-products from advanced clean-coal technology combustors. This paper briefly describes various coal combustion products produced, as well as current best recycling use options for these materials. Materials, productions, properties, potential applications in manufacture of emerging materials for sustainable construction, as well as environmental impact are also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号