首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
TiO2,ZnO光催化降解庚烷的活性研究   总被引:11,自引:4,他引:11  
采用XRD,SPS,XPS,BET技术对TiO2和ZnO超细粉进行了结构、性能测试、考察了不同粒径的超细粉和普通商品(体相)TiO2、ZnO对庚烷的气相光催化反应,结果表明,TiO2(锐钛矿型)光催化活性大于ZnO,锐钛矿型TiO2光催化活性较金红石型TiO2好,对于同一结构的粒子来说,粒径愈小,表面羟基含量愈高,光催化活性愈高,通过反应产物的分析,探讨了反应机理。  相似文献   

2.
Nanocomposites composed of two or more components with desirable performance have attracted tremendous attention, mainly due to the synergic effect between the components. The effective combination of ZnO and reduced graphene oxide would lead to ameliorate the photocatalytic performance. To enhance applicability of semiconductor photocatalytic, the composites used should be good interfacial contact governed by suitable particle size distribution. Herein we aim to fabricate the different crystallize size of ZnO nanoparticles (NPs) in ZnO–reduced graphene oxide (ZnO–rGO) nanocomposites by sonochemical synthesis and subsequent facile drying treatment method. The Zn precursor, Zn(Ac)2, with a plenty of functional groups, was used as a starting source for both reduction of graphene oxide and formation of ZnO on rGO sheets through chemical bonds without the addition of hazardous reducing agents. LiOH was chosen as an assistive reagent to enhance the complete reaction between Zn(Ac)2 and GO in the formation of ZnO–rGO nanocomposites. More remarkably, drying condition has the great influence on the crystallize size of ZnO NPs in as-prepared ZnO–rGO nanocomposites. It is found that ZnO–rGO nanocomposites dried at ?50 °C (freeze drying) show the highest photocatalytic efficiency in the degradation of rhodamine B (RhB) as compared to ZnO–rGO nanocomposites by other drying conditions under visible-light irradiation. Correlating the crystallize size obtained by different drying temperatures with the photocatalytic activity, it is probed that the smaller crystallize size in ZnO–rGO nanocomposites enhances the interfacial contact and a chemical bonding between rGO and ZnO NPs leading to the effective separation of electrons and holes. In addition, the O 2 ·? anion was determined to be the main active oxidant by free radicals trapping experiment and a photodegradation mechanism of ZnO–rGO nanocomposites over rhodamine B (RhB) was proposed based on our observations.  相似文献   

3.
• Photocatalytic activity was improved in TiO2 thin film by rapid thermal annealing. • Photoreactor was designed for TiO2 thin film. • Considerable reusability and durability of prepared photocatalysts were studied. Un-biodegradable pharmaceuticals are one of the major growing threats in the wastewaters. In the current study, TiO2 thin film photocatalysts were designed by nanocrystal engineering and fabricated for degradation of the acetaminophen (ACE) in a photocatalytic reaction under UV light irradiation in batch and continuous systems. The photocatalyst was prepared by sputtering and then engineered by thermal treatment (annealing at 300℃ (T300) and 650℃ (T650)). The annealing effects on the crystallinity and photocatalytic activity of the TiO2 film were completely studied; it was found that annealing at higher temperatures increases the surface roughness and grain size which are favorable for photocatalytic activity due to the reduction in the recombination rate of photo-generated electron-hole pairs. For the continuous system, a flat plate reactor (FPR) was designed and manufactured. The photocatalytic performance was decreased with the increase of flow rate because the higher flow rate caused to form the thicker film of the liquid in the reactor and reduced the UV light received by photocatalyst. The reusability and durability of the samples after 6 h of photocatalytic reaction showed promising performance for the T650 sample (annealed samples in higher temperatures).  相似文献   

4.
The objective of this study was to prepare a new photocatalyst with high activities for degradation of organic pollutants. Coupled ZrO2/ZnO photocatalyst was prepared with a simple precipitation method with cheap raw materials zinc acetate and zirconium oxychloride, and was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Reactive brilliant red X-3B was used as a model compound to investigate the photocatalytic activity of synthesized catalysts in water under 254 nm UV irradiation. Results show that the optimal calcination temperature and coupling molar ratio of Zr were 350°C And 2.5%, respectively. At the calcination temperature of 350°C, ZrO2 was dispersed on the surface of hexagonal ZnO in the form of amorphous clusters. The particle size of ZrO2/ZnO decreased with the decrease of calcination temperature and the increase of Zr coupling amount. ZrO2/ZnO has better photocatalytic activity for degradation of reactive brilliant red (RBR) X-3B than pure ZnO and P25-TiO2.  相似文献   

5.
•Wood and its reassemblies are ideal substrates to develop novel photocatalysts. •Synthetic methods and mechanisms of wood-derived photocatalysts are summarized. •Advances in wood-derived photocatalysts for organic pollutant removal are summed up. •Metal doping, morphology control and semiconductor coupling methods are highlighted. •Structure-activity relationship and catalytic mechanism of photocatalysts are given. Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years, because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials. Herein, we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants. This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood. The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants (such as 1D fiber, 2D films and 3D porous gels) using advanced nanotechnology including sol-gel method, hydrothermal method, magnetron sputtering method, dipping method and so on. Next, we highlight typical approaches that improve the photocatalytic property, including metal element doping, morphology control and semiconductor coupling. Also, the structure-activity relationship of photocatalysts is emphasized. Finally, a brief summary and prospect of wood-derived photocatalysts is provided.  相似文献   

6.
Air pollution is a major issue leading to many serious illnesses. Exposure to formaldehyde may occur by breathing contaminated indoor air, tobacco smoke, or ambient urban air. Exposure to formaldehyde has been associated with lung and nasopharyngeal cancer. Therefore, there is a need for methods to degrade formaldehyde. Here, we studied the photocatalytic decomposition of gaseous formaldehyde over nanosized ZnO particles on bone char. The conditions were UV/bone char, UV/ZnO nanoparticles, and UV/ZnO-bone char in continuous flow mode. We investigated the effects of humidity, initial formaldehyde concentration, and residence time on decomposition of formaldehyde. Agglomeration of ZnO particles in the bone char pores was characterized by Brunauer, Emmett, and Teller surface area, and scanning electron micrograph. Results show that maximum decomposition efficiency of formaldehyde was 73 %. The optimal relative humidity was by 35 %. Findings also indicated that immobilization of ZnO nanoparticles on bone char has a synergetic action on photocatalytic degradation. This is explained by the strong adsorption of formaldehyde molecules on bone char, resulting in higher diffusion to the catalytic ZnO and thus a higher rate of photocatalysis.  相似文献   

7.
吴剑涛  柳松 《生态环境》2010,19(5):1054-1058
采用溶胶-凝胶法,将经过油酸铵改性的掺钒二氧化钛粉末投入到纯TiO2溶胶中,烘干、煅烧,制得带有n-n异质结半导体结构的复合型高活性掺钒二氧化钛光催化剂,并通过XRD、TEM、XPS等技术对样品进行了表征。通过对甲基橙溶液的光催化降解实验来考察TiO2/V-TiO2催化剂的光催化活性。结果表明:TiO2/V-TiO2复合催化剂拥有比纯TiO2更高的光催化活性。其中,V的掺杂摩尔分数为0.5%、TiO2:V-TiO2的质量比为10∶1的最佳复合催化剂,其光催化活性是纯TiO2的5.1倍。  相似文献   

8.
Nanosized ZnO rods were synthesized using a microwave-assisted aqueous method. High molecular weight polyvinyl alcohol was used as a stabilizing agent. Size, surface morphology, and structure were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). SEM and TEM images show that ZnO nanorods have diameters of about 50?nm and lengths of a few micrometers. The XRD pattern reveals that ZnO nanorods are of hexagonal wurtzite structure. The average crystallite size calculated from Scherrer's relation was found to be 40?nm. The effects of catalyst loading, pH value, and initial concentration of methyl orange on the photocatalytic degradation efficiency using ZnO nanorods as photocatalyst were discussed. The results revealed that ZnO nanorods with a diameter of 50?nm showed the highest photocatalytic activity at a surface density of 0.2?g?dm?3.  相似文献   

9.
A layer of zinc oxide (ZnO) micro-grid was deposited on the surface of ZnO film using the DC reactive magnetron sputtering method and the micro-sphere lithography technique on glass substrates. Samples of this layer were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and ultraviolet-visible light spectroscopy. X-ray diffraction showed the high crystallinity of ZnO film and the regular arrangement of the micro-grid. The microgrid ZnO has a lower specular reflection and a higher diffuse reflection, allowing incident light to reflect two or three times to enhance the usage of light. Photocatalytic degradation experiments on methylene blue using both ZnO micro-grid and ordinary film showed that the ZnO micro-grid has better photo-catalytic properties than ordinary film. The ZnO micro-grid enhanced the photocatalytic efficiency of ZnO film by 28% with a degradation time of 300 min.  相似文献   

10.
● Systematic information of recent progress in photocatalytic NO x removal is provided. ● The photocatalysts with special morphologies are reviewed and discussed. ● The morphology and photocatalytic NO x removal performance is related. The significant increase of NOx concentration causes severe damages to environment and human health. Light-driven photocatalytic technique affords an ideal solution for the removal of NOx at ambient conditions. To enhance the performance of NOx removal, 1D, 2D and 3D photocatalysts have been constructed as the light absorption and the separation of charge carriers can be manipulated through controlling the morphology of the photocatalyst. Related works mainly focused on the construction and modification of special morphologic photocatalyst, including element doping, heterostructure constructing, crystal facet exposing, defect sites introducing and so on. Moreover, the excellent performance of the photocatalytic NOx removal creates great awareness of the application, which has promising practical applications in NOx removal by paint (removing NOx indoor and outdoor) and pavement (degrading vehicle exhausts). For these considerations, recent advances in special morphologic photocatalysts for NOx removal was summarized and commented in this review. The purpose is to provide insights into understanding the relationship between morphology and photocatalytic performance, meanwhile, to promote the application of photocatalytic technology in NOx degradation.  相似文献   

11.
以钛酸丁酯为原料,以粉煤灰微珠为载体,采用溶胶-凝胶法制备了TiO2/粉煤灰光催化剂.负载于粉煤灰表面的TiO2平均粒径约为7nm,晶型为锐钛矿型,该催化剂在太阳光下降解初始浓度为10mg·l-1的甲基橙,经6h,甲基橙的降解率可达98.9%,将其应用于实际样品的测定,经3h降解率可达96.1%,显示出优越的光催化降解性能.  相似文献   

12.
以沉淀法制备了高活性ZnO纳米丛(nanobushes,ZNB),以水热反应制备得到普通ZnO纳米颗粒(nanoparticles,ZNP).利用X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、比表面积测定仪(BET)和光致发光光谱(PL)等手段对ZNB和ZNP进行了表征,并比较了其光催化活性的差异.在紫外光(λ≤387 nm)照射40 min后ZNB使有机染料罗丹明B(Rhodamine B,RhB)完全褪色,而相同条件下ZNP仅能使RhB褪色53%.通过总有机碳(TOC)的测定,研究了ZnO对RhB深度氧化矿化程度,光照6 h后ZNB对RhB矿化率高达92%,而ZNP对RhB的矿化率只有77%.跟踪测定了光催化降解过程中活性氧化物种相对含量的变化,表明紫外光激发条件下,ZnO光催化反应机理主要涉及羟基自由基(.OH)历程,且ZNB产生活性氧化物种的量高于ZNP.  相似文献   

13.
Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.  相似文献   

14.
● TiO2/ZSM-11 was prepared by a facile solid state dispersion method. ● Mechanism for photocatalytic degradation of dyes was investigated. ● Both experimental and MD simulations were conducted. ● Chemisorption instead of electrostatic interaction played a critical role. Photocatalytic degradation is a promising way to eliminate dye contaminants. In this work, a series of TiO2/ZSM-11 (TZ) nanocomposites were prepared using a facile solid state dispersion method. Methyl orange (MO), methylene blue (MB), and rhodamine B (RhB) were intentionally chosen as target substrates in the photocatalytic degradation reactions. Compared to pristine TiO2, negative effect was observed on MO degradation while promoted kinetics were collected on MB and RhB over TZ composites. Moreover, a much higher photocatalytic rate was interestingly achieved on RhB than MB, which indicated that a new factor has to be included other than the widely accepted electrostatic interaction mechanism to fully understand the selective photodegradation reactions. Systematic characterizations showed that TiO2 and ZSM-11 physically mixed and maintained both the whole framework and local structure without chemical interaction. The different trends observed in surface area and the photo-absorption ability of TZ composites with reaction performance further excluded both as the promotion mechanism. Instead, adsorption energies predicted by molecular dynamics simulations suggested that differences in the adsorption strength played a critical role. This work provided a deep mechanistic understanding of the selective photocatalytic degradation of dyes reactions, which helps to rationally design highly efficient photocatalysts.  相似文献   

15.
The photocatalytic degradation of the organo-phosphorous pesticide phosphamidon at low concentration in aqueous solution on Ag-doped ZnO nanorods was investigated. Nanosized Ag-doped ZnO rods were synthesized by using a microwave assisted aqueous method. High molecular weight polyvinyl alcohol was used as a stabilizing agent. Composition and structure were investigated using energy-dispersive X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). The XRD pattern reveals that ZnO nanorods are of hexagonal wurtzite structure. The average crystallite size calculated from Scherrer's relation was found to be 30?nm. The effects of catalyst loading, pH value, and initial concentration of phosphamidon on the photocatalytic degradation efficiency using Ag-doped ZnO nanorods as a photocatalyst have been discussed. The results revealed that Ag-doped ZnO nanorods with a diameter of 30?nm showed highest photocatalytic activity at a surface density of 1?g?dm?3. The catalyst doped with 0.2?mol% Ag is effective for the degradation of phosphamidon with visible light. This opens a new possibility to decompose pesticides that are present in wastewater.  相似文献   

16.
A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO2 catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO2 catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N2 adsorption, and hydrogen temperature programmed reduction (HE-TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO2 catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO2 improved the thermal stability. The Ce4+ ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO2 catalysts had a typical three-dimensional (3D) hierarchical porous struc- ture, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO2 catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conven- tional materials.  相似文献   

17.
• A novel Z-scheme Si-SnO2-TiOx with SnO2 as electron mediator is first constructed. • Transparent and conductive SnO2 can pass light through and promote charge transport. • VO from SnO2 and TiOx improve photoelectrochemical performances. • Efficient photocatalytic degradations originate from the Z scheme construction. Z-scheme photocatalysts, with strong redox ability, have a great potential for pollutants degradation. However, it is challenging to construct efficient Z-scheme photocatalysts because of their poor interfacial charge separation. Herein, by employing transparent and conductive SnO2 as electron mediator to pass light through and promote interfacial charge transportation, a novel Z-scheme photocatalyst Si-SnO2-TiOx (1<x<2) was constructed. The Z-scheme photocatalyst displayed an order of magnitude higher photocurrent density and a 4-fold increase in open-circuit potential compared to those of Si. Moreover, the onset potential shifted negatively for approximately 2.2 V. Benefiting from these advantages, this Z-scheme Si-SnO2-TiOx exhibited efficient photocatalytic performance toward phenol degradation and mineralization. 75% of the phenol was degraded without bias potential and 70% of the TOC was removed during phenol degradation. Other typical pollutants such as bisphenol A and atrazine could also be degraded without bias potential. Introducing a transparent and conductive electron mediator to construct Z-scheme photocatalyst gives a new sight to the improvement of photocatalytic performance in Z scheme.  相似文献   

18.
In this work, xylene removal from waste gas streams was investigated via catalytic oxidation over Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts. Activated carbon was obtained from pine cone chemically activated using ZnCl2 and modified by H3PO4. Natural zeolite of clinoptilolite was modified by acid treatment with HCl, while nano-ceria was synthesized via redox method. Mixed supports of carbon-zeolite and carbonceria were prepared and palladium was dispersed over them via impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller surface area (BET), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) techniques. Characterization of nanocatalysts revealed a good morphology with an average particle size in a nano range, and confirmed the formation of nano-ceria with an average crystallite size below 60 nm. BET analysis indicated a considerable surface area for catalysts (~1000 m2·g?1). FTIR patterns demonstrated that the surface groups of synthesized catalysts are in good agreement with the patterns of materials applied in catalyst synthesis. The performance of catalysts was assessed in a low-pressure catalytic oxidation pilot in the temperature range of 100° C-250°C. According to the reaction data, the synthesized catalysts have been shown to be so advantageous in the removal of volatile organic compounds (VOCs), representing high catalytic performance of 98% for the abatement of xylene at 250°C. Furthermore, a reaction network is proposed for catalytic oxidation of xylene over nanocatalysts.  相似文献   

19.
Semiconductor photocatalysis is a solution to issues of environmental pollution and energy shortage because photocatalysis can use solar energy to degrade pollutants. The photocatalytic activity can be improved by using composites of ZnO and other semiconductors. Here, composites of ZnO and polymeric graphite-like C3N4 (g-C3N4) with high photocatalytic activities were prepared by microwave synthesis. Products were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible and Fourier transform infrared spectroscopy. The photocatalytic degradation of Rhodamine B was tested under irradiation from a Xe lamp. Results show that adding graphite-like C3N4 promotes the photocatalytic activity of ZnO. Composites with 1.0 wt% g-C3N4 showed the best photodegradation efficiency, and the reaction average energy was approximately 33.71 kJ mol?1.  相似文献   

20.
•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase. •TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver. •Inactivation mechanism occurred by membrane damage, morphological changes and lysis. •ZnO/Poraver showed null inactivation of bioaerosols. •Catalysts losses at the outlet of the photoreactor for all systems were negligible. Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号