首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aims to identify effective antialgal allelochemicals from marine macroalgae that inhibit the growth of red tide microalgae. Practically, new algicidal agents were developed to control red tide. The growth inhibitory effects of 5 marine macroalgae Porphyra tenera, Laminaria japonica, Ulva pertusa, Enteromorpha clathrata, and Undaria pinnatifida on Skeletonema costatum were evaluated by adding crude seawater extracts of macroalgal dry tissue into the culture medium containing S. costatum. The half-effective concentrations at 120 h (EC50, 120 h) of the seawater extracts were 0.6, 0.9, 1.0, 1.0, and 4.7 g/L for the five macroalgae above, respectively. E. clathrata, L. japonica and U. pertusa showed strong allelopathic effect on the growth of S. costatum. There have been no previous reports with regard to the allelopathic effects of the former two macroalgae so far. The possible allelochemicals of 21 compounds of the E. clathrata were detected using Gas chromatography-mass spectrometry (GC-MS) analysis. Unsaturated fatty acids, acrylic acid (C3H4O2), and linolenic acid (C18H30O2) were the most likely allelochemicals in E. clathrata.  相似文献   

2.
Merostachys riedeliana Rupr. is a native and overabundant bamboo species in the Brazilian Atlantic Forest. Moderate to strong allelopathic activity may be one mechanism that explains this super-dominance and the changes in structure and composition of forest areas occupied by bamboo. This study evaluated the phytotoxic effect of M. riedeliana extracts and fractions and identified their putative allelochemicals. We investigated the presence of allelochemicals in soil collected from stands occupied by M. riedeliana. Furthermore, we evaluated the putative effect of tree allelochemicals, individually and combined, on germination and growth. The aqueous extract of leaves and its ethyl acetate fraction presented the highest inhibitory effects on seed germination and seedling growth. The effect of the extracts and fractions on the target species was species-specific. Neither the individual nor the combined phenolic acids significantly inhibited seed germination; however, a pronounced growth inhibition was observed in M. bimucronata seedlings treated with vanillic acid and in E. verna and M. bimucronata seedlings treated with combined phenolic acids. Isovitexin, vitexin, isoorientin, orientin, and their O-glycoside derivatives, the lactonic dimer of the p-hydroxybenzoic acid and 3,4-methylenedioxymandelic acid were identified in the aqueous extracts and ethyl acetate fraction by Liquid Chromatography-Diode Array Dectector/Electrospray Ionization/Mass Spectrometry (LC-DAD/ESI–MS/MS). The Gas Chromatography-Mass Spectrometer (GC–MS) profile of the same extract and fraction showed the presence of benzoic, benzeneacetic, salicylic, p-hydroxybenzoic, p-hydroxyphenylacetic, vanillic, p-coumaric, protocatechuic, syringic, gallic, m-coumaric vanillylmandelic, 4-methylmandelic, 3,4-methylenedioxymandelic and trans-ferulic acids. The p-benzoic acid and the apigenin 6-C-glucoside (isovitexin) were identified in the soil extract collected from under bamboo-growing areas. Even though laboratory bioassays are not completely predictive of the allelopathic effects that occur in nature, the results of this study provide preliminary evidence of allelopathy as a possible species-specific inhibition mechanism of native species that explain the impoverishment of floristic richness and the functional groups in areas where M. riedeliana is overabundant.  相似文献   

3.
Potential allelopathic interactions between Skeletonema costatum and Alexandrium minutum were investigated using mixed cultures and culture filtrate in nutrient-replete medium. A. minutum growth was inhibited when grown in S. costatum filtrate, with the inhibitory effect directly proportional to the percentage of filtrate added. This demonstrates that the release of allelopathic compounds caused the growth inhibition. In contrast, the filtrate of A. minutum exerted no allelopathic activity on S. costatum. An autoinhibitory compound (15(S)-HEPE) extracted and purified from S. costatum culture was added to cultures of both S. costatum and A. mintum. This substance could depress S. costatum growth, but showed no significant inhibitory activity on A. minutum. This documented a second type of allelochemical interaction, termed auto-allelopathy, caused by a different compound from the one or ones that affected A. minutum in the co-cultures with added crude filtrate. Further studies are needed to explore the relative importance of these two types of allelopathy as factors influencing the competition between S. costatum and A. minutum in the field. Furthermore, given the observed decrease in diatom dominance relative to dinoflagellates with increasing eutrophication, one can predict that toxic species like A. minutum might become more prevalent in the future in the East China Sea if the trend of increasing pollution of coastal waters continues.  相似文献   

4.
Ulvaria obscura, a prominent component of green tide blooms in Washington, is unique among macroalgae because it contains dopamine. To examine dopamine release by U. obscura following simulated low tides, we conducted 6 field experiments in which algae were emersed for 75 min and then immersed in filtered seawater (FSW). Dopamine was measured in algal tissues prior to emersion and 3 h after immersion and in seawater for 3 h following immersion. In our experiments, algae released 7–100% of their tissue dopamine, resulting in average seawater concentrations of 3–563 μM. In 5 of 6 experiments, seawater dopamine concentrations were highest immediately after immersion, and then decreased over time. The percentages of dopamine released were not correlated with tissue dopamine concentrations, but were positively correlated with solar radiation during emersion. The release of dopamine, which is both cytotoxic and genotoxic, may explain the negative effects of U. obscura exudates on marine organisms.  相似文献   

5.
Ría de Vigo and Ría de Aldán have high biological richness that is reflected in the number of environmental protection areas like the Atlantic Islands National Park and five places of community interest. Benthic algal communities play an important role in these ecosystems due to their ecological functions and support a great part of this biological richness. We tested by means of bio-optical modelling and Airborne Hyperspectral Scanner (AHS) images to what extent remote sensing could be used to map these communities in Ría de Vigo and Ría de Aldán (NW Spain). Reflectance spectra of dominating macroalgae groups were modelled for different water depths in order to estimate the separability of different bottom types based on their spectral signatures and the spectral characteristics of the AHS. Our results indicate that separation between three macroalgae groups (green, brown and red) as well as sand is possible when the bottoms are emerged during low tide. The spectra differences decrease rapidly with increasing water depth. Two types of classifications were carried out with the three AHS images: maximum likelihood and spectral angle mapper (SAM). Maximum likelihood showed positive results reaching overall accuracy percentages higher than 95?% and kappa coefficients higher than 0.90 for the bottom classes: shallow sand, deep sand, emerged rock, emerged macroalgae and submerged macroalgae. Sand and algae substrates were then separately analysed with SAM. These classifications showed positive results for differentiation between green and brown macroalgae until 5?m depth and high differences between all macroalgae and sandy substrate. However, differences between red and brown macroalgae are only detectable when the algae are emerged.  相似文献   

6.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

7.
Summary. Recent economic and social changes in north Mediterranean regions have led to an important rural depopulation. Consequently, meadows developed on abandoned agricultural lands (characterized by high species richness) undergo reforestation. These former fields are mainly colonized by Pinus halepensis Miller, which is known to synthetize a wide range of secondary metabolites, among these, some could influence plant succession through allelopathy. The allelopathic potential of P. halepensis, was tested against two target species (Lactuca sativa L. and Linum strictum L.) with aqueous extracts obtained from different organs (root and needle) taking into account the individual age (±10, ±30 and > 60 years old). Root and needle extracts affected differently germination and growth of the two target species, the responses varying with concentration of extracts, age and organs tested. The strongest inhibitory effect was observed on the germination and growth of L. strictum, exposed to needle extracts of young P. halepensis (±10 years old), and root extracts of older P. halepensis (> 30 years old). These extracts contained several phenolic acids (e.g. 4-hydroxybenzoic acid and p-coumaric acid), which are known as allelochemicals and their concentrations vary with age and organ tested. Hence, P. halepensis could influence secondary succession through the release of potential allelochemicals in the environment by leaf leachates or root exudates.  相似文献   

8.
Intertidal macroalgae may spend a significant part of their lives in air. During photosynthesis in air, they encounter much lower concentrations of inorganic carbon than in seawater. Because they accumulate inorganic carbon from seawater, we investigated whether they similarly accumulate it from air. We measured photosynthesis in the intertidal species Fucus vesiculosus L. during 1990 and 1991 with a gas-phase O2 electrode or CO2-exchange apparatus in air and with a liquid-phase O2 electrode in seawater. Maximum rates were rapid and similar in air and seawater regardless of the method. Tissue from seawater could carry on photosynthesis in CO2-free air, indicating that carbon was stored in the tissue. After 2 h, this store was depleted and photosynthesis ceased. Supplying CO2 in air replenished the store. Under identical conditions, terrestrial C3 and C4 species showed no evidence of this store, but a CAM (crassulacean acid metabolism) species did. However, in contrast to the CAM behavior, F. vesiculosus did not store CO2 significantly in the dark. We found a small acid-releasable pool of carbon in the tissue that disappeared as photosynthesis depleted the carbon store. However, the pool was too small to account for the total carbon stored. While CO2 was being acquired or released from the store in the light, photosynthesis was not inhibited by 21% O2. These results indicate that there are two parallel paths for the supply of CO2 to photosynthesis. The first depends on inorganic carbon in seawater or in air and supports rapid photosynthesis. The second involves CO2 slowly released from an organic intermediate. The release protects CO2 fixation from the inhibitory effects of 21% O2. Photosynthesis in F. vesiculosus thus appears to be C3-like in its rapid fixation of CO2 from a small inorganic pool into phosphoglycerate. However, it is C4-like in its pre-fixation of carbon in an organic pool in the light, and is CAM-like in its ability to slowly use this pool as a sole source of CO2. The organic pool may serve to protect photosynthetic CO2 fixation against the inhibitory effects of O2 in air and in the boundary layer in seawater. Received: 6 March 1998 / Accepted: 16 October 1998  相似文献   

9.
为研究四溴双酚A(tetrabromobisphenol A,TBBPA)对海洋微藻的毒性效应,本文设置五个不同浓度组(0、1.0、5.0、10.0、20.0 mg·L-1)进行中肋骨条藻(Skeletonema costatum)培养实验,在96 h内取样分析其光合色素含量、可溶性蛋白含量、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活性的变化。结果表明,较低浓度组(1.0和5.0 mg·L-1)叶绿素a、叶绿素c和类胡萝卜素含量48 h之前被显著诱导,最大值出现在24 h;较高浓度组(10.0和20.0 mg·L-1)三种色素含量在48 h之前被显著抑制,24 h达最低值;72 h之后各浓度组均恢复到对照组水平。不同浓度TBBPA胁迫下,中肋骨条藻的可溶性蛋白含量、SOD活性和MDA含量一般被显著诱导,SOD活性和MDA含量在72 h和96 h时随TBBPA浓度升高而增加。虽然1.0 mg·L-1TBBPA对中肋骨条藻生长不具有可观测效应,但已影响到其生理生化指标。目前海水中TBBPA浓度较低,尚不会对中肋骨条藻产生毒性影响。  相似文献   

10.
Twenty isolations of marine higher fungi were examined in regard to their cellulolytic capabilities. Application of the viscosimetric method produced detailed information on the cellulolytic activities of marine fungi. However, only the C x -component of the total cellulase-complex could be estimated by this method. The most active species were Dendryphiella salina, Chaetomium ramipilosum, Asteromyces cruciatus and Humicola alopallonella. Only very slight or no C x -activity was observed in Cirrenalia macrocephala, Monodictys pelagica and Zalerion maritimum. This finding reveals no correlation between the cellulolytic activity of the fungi in vitro and their frequency on wood-substrates in situ. For example, differences in the intensity of C x -cellulase production of D. salina are caused by variations in salinity and composition of the nutrient broth, especially by the kind of cellulose added for enzyme induction and by the addition or absence of glucose. Most of the C x -cellulase produced is present in the cell-free culture-filtrate. Only a small quantity is absorbed by the cellulose particles or the fungal mycelia. Parallel to the mycelial growth, and accompanied by a shift in pH, the C x -cellulase-activity rises continuously, attaining a maximum after several weeks. During further cultivation, the maximum remains more or less constant for a long period. Tests using different methods, e.g. cellulose-powder-agarplates, proved unsuitable because of spreading hyphal growth, dark pigmentation, heavy sexual or asexual sporulation and relatively low cellulase production during short culture periods.  相似文献   

11.
The relative effects of NH 4 + (N) and PO 4 3- (P) on growth rate, photosynthetic capacity (Pmax), and levels of chemical constituents of the red macroalga Gracilaria tikvahiae McLachlan were assayed during winter and summer, 1983 in inshore waters of the Florida Keys by using in-situ cage cultures. During winter, both N and P enrichment enhanced growth over that of ambient seawater; however, P rather than N accounted for more (60%) of the increased winter growth. During summer, P, but not N, enhanced growth over ambient seawater and accounted for 80% of increased growth. Similarly, Pmax was enhanced by both P and N during winter (but mostly by P) and only by P during summer. Elevated C:P, C:N and N:P ratios of G. tikvahiae tissue during winter, but only C:P and N:P ratios during summer, support the pattern of winter N and P limitation and summer P-limitation. This seasonal pattern of N vs P limited growth of G. tikvahiae appears to be a response to seasonally variable dissolved inorganic N (twofold greater concentrations of NH 4 + and NO 3 - during summer compared to winter) and constantly low to undetectable concentrations of PO 4 3- . Mean C:P and N:P ratios of G. tikvahiae tissue during the study were 1 818 and 124, respectively, values among the highest reported for macroalgae.  相似文献   

12.
Early life stages of marine crustaceans respond sensitively to elevated seawater PCO2. However, the underlying physiological mechanisms have not been studied well. We therefore investigated the effects of elevated seawater PCO2 on oxygen consumption, dry weight, elemental composition, median developmental time (MDT) and mortality in zoea I larvae of the spider crab Hyas araneus (Svalbard 79°N/11°E; collection, May 2009; hatch, December 2009). At the time of moulting, oxygen consumption rate had reached a steady state level under control conditions. In contrast, elevated seawater PCO2 caused the metabolic rate to rise continuously leading to a maximum 1.5-fold increase beyond control level a few days before moulting into the second stage (zoea II), followed by a pronounced decrease. Dry weight of larvae reared under high CO2 conditions was lower than in control larvae at the beginning of the moult cycle, yet this difference had disappeared at the time of moulting. MDT of zoea I varied between 45 ± 1 days under control conditions and 42 ± 2 days under the highest seawater CO2 concentration. The present study indicates that larval development under elevated seawater PCO2 levels results in higher metabolic costs during premoulting events in zoea I. However, H. araneus zoea I larvae seem to be able to compensate for higher metabolic costs as larval MDT and survival was not affected by elevated PCO2 levels.  相似文献   

13.
We investigated the effects of ethyl 2-methyl acetoacetate (EMA) on growth of the marine diatom algae Phaeodactylum tricornutum (P. tricornutum) and Skeletonema costatum (S. costatum). Growth of P. tricornutum was significantly inhibited by the minimum concentration (3.5 mmol·L ?1) of EMA at lower initial algal densities (IADs) (3.6×104 and 3.3×105 cells·mL ?1). However, at the highest IAD, significant growth inhibition was found at above 7 mmol·L ?1 of EMA exposure. In S. costatum, EMA concentrations of 10.5 mmol·L ?1 or more significantly inhibited growth at lower IAD (3×104 and 1.8×105 cells·mL ?1); at the highest IAD, only EMA concentrations above 14 mmol·L ?1 obviously inhibited the growth of S. costatum. Changes in specific growth rates and pigment were consistent with algal growth, but only at higher EMA concentrations or lower IAD values was the ratio of chlorophyll a (Chla) to carotenoid significantly lower than the control. Medium effective concentration (EC 50) values were in the order 4.07, 8.03 and 12.27 mmol·L ?1 for P. tricornutum and 7.48, 11.92 and 17.22 mmol·L ?1 for S. costatum. All these results show that the effect of EMA on the growth of algae was species specific and mainly depended on IAD, which might be an important factor to influence algal growth.  相似文献   

14.
A simple and sensitive spectrophotometric method of measuring electron transfer in the transport system (ETS) in marine phytoplankton has been developed and characterized. The assay is based on the reduction of the tetrazolium salt 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) by homogenates in the presence of the nonionic detergent Triton X-100. The simplicity and sensitivity of this assay have considerable advantage over existing methods of measuring ETS activity in marine samples where numerous assays must be rapidly carried out on samples which often demonstrate low activities. Several established substrates and inhibitors of electron transport in the ETS were investigated, and each is discussed in relation to the site of INT reduction in the diatoms Skeletonema costatum and Chaetoceros debilis and in the unicellular green alga Dunaliella tertiolecta. The results from these studies suggest that the maximum rate of electron transport, V max, is measured in each case.  相似文献   

15.
利用开放式空气CO2浓度升高(free air carbon-dioxide enrichment,FACE)平台中的水培试验,研究了低氮(LN:10 mg·L-1)和高氮(HN:30 mg·L-1)水平下,大气CO2浓度升高对化感与非化感水稻(Oryza sativa L.)品种的生长、碳氮比(C/N)和化感物质含量的影响,并分析了CO2浓度升高条件下水稻C/N和化感物质含量间的相互关系.结果表明:CO2浓度升高对化感(PI)与非化感水稻品种(秀水)的生长均有极显著促进作用.CO2浓度升高后,LN条件下水稻C/N显著增加,HN条件下则无显著变化.CO2浓度升高后化感水稻品种次生代谢物质含量增加,特征化感物质含量增加,非化感品种的这种变化不显著.化感水稻品种C/N分别与次生代谢物质含量和特征化感物质含量之间呈显著正相关关系.  相似文献   

16.
The gastro-intestinal contents of the sea gull Laurus brunicephalus Jerdon were found to possess antibacterial activity. This activity could be traced to heavy accumulations of the marine blue-green alga Trichodesmium erythraeum in the gut. During 1969, a bloom of T. erythraeum began in Porto Novo waters about the middle of February, and attained a peak during the second week of March. It has been reported previously by the author that antibacterial properties are exhibited by T. erythraeum maintained in laboratory cultures, as well as in water samples collected from a red tide area. It was also reported (Ramamurthy, 1970) that the gut contents in 2 pelagic fishes, Hilsa kanagurta and Rastrelliger kanagurta, collected during the same red tide bloom period, possessed antibacterial properties. During this period large numbers of these fishes were consumed by sea gulls L. brunicephalus. In view of this finding, experimental procedures were adopted to determine whether extracts of T. erythraeum occurring in the gut of the sea gulls might exhibit antibacterial activity. It was found that T. erythraeum collected from the gut of L. brunicephalus could inhibit both gram positive and gram negative bacteria. Gastro-intestinal extracts from L. brunicephalus collected during the non-bloom period of T. erythraeum showed heavy microbial growth of bacteria and fungi. Evidently, antibacterial or sterile conditions prevail in the gut of these tropical sea gulls in a manner similar to that observed in Polar penguins by Sieburth (1959, 1961).  相似文献   

17.
Daily compensation irradiation for net photosynthetic rates (ΣI comp) of Skeletonema costatum (Greville) Cleve, Chaetoceros ceratosporum Ostenfeld, Nitzschia sp., Thalassiosira nordenskiöldii Cleve, and Chroomonas salina (Wislouch) Butcher were measured during 1979 to obtain values for use in ecological models describing compensation and critical depths of marine phytoplankton. Batch cultures of these unicellular algae were exposed to temperatures and photoperiods varying from 6° to 15°C and 8.4 to 16.0 h, conditions typical of surface water in Saanich Inlet, a fjord in Vancouver Island, British Columbia, Canada. Results obtained with S. costatum and T. nordenskiöldii provided estimates of ΣI comp varying between 1.8 and 13 J cm-2 d-1, from which a mean value of 7.0 J cm-2 d-1 was calculated for use in ecological models with neritic phytoplankton. No seasonal variation in compensation irradiation was noted because photosynthetic efficiencies, which increased as division rates increased, were balanced by respiration rates, which increased as temperature increased. Results obtained with Chaetoceros ceratosporum, Nitzschia sp., and Chroomonas salina were difficult to interpret, because respiration rates were stimulated and depressed by light, respectively, for the first two species and the last one. This light effect was greatest when cells grew under conditions of low temperature and short photoperiod. Also, under winter and spring conditions, cells of Nitzschia sp. appeared to fix CO2 in the dark and with low irradiances by mechanisms other than photosynthesis.  相似文献   

18.
Acidification of the World’s oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism’s energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels “low”, “medium” and “high” for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation—with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.  相似文献   

19.
Saturated and unsaturated hydrocarbons in marine benthic algae   总被引:2,自引:0,他引:2  
Saturated and olefinic hydrocarbons were determined in 24 species of green, brown and red benthic marine algae from the Cape Cod area (Massachusetts, USA). Among the saturated hydrocarbons, n-pentadecane predominates in the brown and n-heptadecane in the red algae. A C17 alkyleyclopropane has been identified tentatively in Ulvalactuca and Enteromorpha compressa, two species of green algae. Mono-and diolefinic C15 and C17 hydrocarbons are common. The structures of several new C17, C19 and C21 mono-to hexaolefins have been elucidated by gas chromatography, mass spectrometry and ozonolysis. In fruiting Ascophyllum nodosum, the polyunsaturated hydrocarbons carbons occur exclusively in the reproductive structures. The rest of the plant contains n-alkanes from C15 to C21. A link between the reproductive chemistry of benthic and planktonic algae and their olefin content is suggested. An intriguing speculation is based on Paffenhöfer's (1970) observation that the sex ratio of laboratory reared Calanus helgolandicus depends upon the species of algae fed to the nauplii. The percentage of males produced correlates with our analyses of heneicosahexaene in the algal food. Our analyses of the hydrocarbons in benthic marine algae from coastal environments should aid studies of the coastal food web and should enable us to distinguish between hydrocarbon pollutants and the natural hydrocarbon background in inshore waters.Contribution No. 2582 of the Woods Hole Oceanographic Institution; and Contribution No. 227, Systematics-Ecology Program.  相似文献   

20.
The influence of dietary elemental contents on consumer stoichiometry was investigated in selected and combined soft tissues (as a proxy of the whole individual) of the omnivorous sea urchin, Lytechinus variegatus. We raised urchins for 4 months in controlled seawater tanks using three different diets with different nutritional contents (from lower to higher: seagrass, red macroalgae, and a formulated diet). Individuals fed the different diets varied an average of 19.7, 19.4, and 38 % in C:N, C:P, and N:P ratios, respectively, with stronger temporal variability for C:P and N:P ratios across tissues and whole individuals. This resulted in homeostasis parameters (1/H) of ?0.45, 0.09, and 0.38, respectively, for C:N, C:P, and N:P, indicative of homeostatic to weakly homeostatic organisms, at least for C:P and N:P ratios. Individuals fed the nutrient-rich formulated diet had higher growth rates (14 ± 0.83 g WW month?1) than those fed macroalgae or seagrass (9.3 ± 0.57 and 3.4 ± 0.33 g WW month?1, respectively). However, rapid body increments in more nutritional diets caused both a decrease in the %N and an increase in the %P of soft tissues, which resulted in significant but opposite effects of diet stoichiometry and growth in sea urchin C:N (R = ?0.74 and R = 0.93, for diet and growth effects, respectively) and N:P ratios (R = 0.60 and R = ?0.63, also, respectively, for diet and growth effects). Among potential compensatory mechanisms helping to preserve certain levels of homeostasis, ingestion rates (g WW diet per g WW of urchin) were higher for seagrass and macroalgae diets than for the nutrient-rich formulated diet. In contrast, absorption and growth efficiencies displayed significant negative associations with nutrient contents in diets and did not exhibit nutritional compensation. Overall, our results suggest that resource stoichiometry strongly determines the growth rate of individuals (R = 0.88, P < 0.01), and moderate variability in C:N:P ratios of sea urchins possibly arise from differences in the allocation of proteins and RNA to body components, similarly to what has been proposed by the growth rate hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号