首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of sheep grazing on species richness, higher order diversity measures, inequality, species composition, functional diversity and allometric relationships at a coastal dune heathland site was investigated. After a prescribed fire in 2002, the site was divided into two parts, where one of the parts was unmanaged and the other part was fenced and grazed by sheep. Sheep grazing had a positive effect on species richness as well as a significant positive effect on the functional diversity at the coastal dune heathland site. Generally, the cover of dwarf shrubs was negatively affected by grazing, whereas the cover of sedges and grasses was positively affected by grazing. There is a need for comparative investigations of the effect of different management methods not only on floristic biodiversity, but on all relevant kinds of biodiversity as well as on soil structure, soil chemistry and habitat micro- and macrostructure. Consequently, we advocate the initiation of an international systematic investigation of the effect of different management methods.  相似文献   

2.
高东 《生态环境》2010,19(8):1999-2003
农业集约化生产方式加速了农业生态系统单一化的进程,导致系统平衡破坏,病、虫、草害频发。在以农业生态环境改善和修复为手段的农业可持续生产和发展的模式中,以农作物多样性的合理布局来提高农业生物多样性水平和控制病、虫、草害的实践,显示出其强大的生命力,即将不同物种的作物或同一作物的不同品种按一定的组合方式和栽种模式进行合理的间栽和套作,将病、虫、草害的发生控制在可以承受的范围内。构建水生动物、水生植物与水稻共存的稻作系统,利用物种多样性、遗传多样性控制有害生物,是农业可持续发展的重要途径。本文综述了国内外稻田物种多样性、遗传多样性利用模式的研究进展,论述了稻田物种多样性、遗传多样性对稻作生态系统的改善,特别是水稻病、虫、草的控制效果及作用机理。  相似文献   

3.
气候变化对生物多样性的影响:脆弱性和适应   总被引:6,自引:0,他引:6  
气候变化对生物多样性影响及其适应直接关系着未来生物多样性的保护.气候变化对生物多样性影响、生物多样性在气候变化影响下的脆弱性、生物多样性适应气候变化方面进行了总结分析,对存在的问题进行了讨论,对今后研究提出了一些建议.过去的气候变化已使物种物候、分布和丰富度等改变,使一些物种灭绝、部分有害生物危害强度和频率增加,使一些生物入侵范围扩大、生态系统结构与功能改变等.未来的气候变化仍将使物种物候和行为、分布和丰富度等改变,使一些物种灭绝、使有害生物爆发频率和强度增加,并将可能使生态系统结构与功能发生改变等.生物多样性适应气候变化包括了自然适应和人为适应两个方面,自然适应体现在物种适应性进化、迁移、生态系统稳定性和弹性等,人为适应体现在种质基因保存、物种异地保护、自然保护区规划设计、生态系统适应性管理、生态恢复和气候灾害防御等.目前,生物多样性对气候变化影响的脆弱性、生物多样性自然适应和人为适应气候变化方面的研究都还不系统深入,需要加强生物多样性自然适应和人为适应气候变化方面的研究.  相似文献   

4.
土地利用变化对生物多样性的影响   总被引:10,自引:0,他引:10  
土地利用变化对生物多样性影响是生物多样性受到威胁的重要因素.文章对土地利用变化对基因多样性、物种多样性、生态系统多样性影响方面的研究进行了总结分析,并提出了新的展望.土地利用变化对基因多样性的影响涉及了对物种生境的隔离、农牧业活动对物种改良和生境条件的改变方面,目前还主要集中在对少数物种繁殖过程方面影响的研究;土地利用变化对物种多样性影响包括对物种优势度和丰富度、种间关系、物种分布格局、物种入侵和灭绝方面的影响,目前对物种丰富性和多样性影响方面研究较多,对物种灭绝、物种入侵和种间关系影响方面的研究极少,且还限于大型动物和植物,对微生物和小型动植物研究却很少;土地利用变化对生态系统的影响涉及了对生态系统结构组成及分布方面的影响.另外,目前缺少土地利用变化对基因多样性、物种多样性和生态系统多样性综合影响方面的研究,难以量化和预测土地利用变化对生物多样性影响效应.未来需要综合考虑基因多样性、物种多样性和生态系统多样性方面,系统开展土地利用变化对生物多样性影响的趋势和机制方面的研究,定量预测土地利用变化对生物多样性的影响.  相似文献   

5.
当前,任何地区的生物多样性都是自然和社会因素长期综合作用所造成。生物多样性最丰富的地区不一定全部由顶极植被所覆盖,而常常是一些包括所有演替类型的地方。本文通过讨论自然环境的变化和人类生产活动对不同区域景观的影响,探讨有关生物多样性的保护问题。  相似文献   

6.
Macroinvertebrates are important components of stream ecosystems, and are often used as indicator species for the assessment of river ecology. Numerous studies have shown that substrate is the primary physical environmental variable affecting the taxa richness and density of macroinvertebrates. The aim of this work is to study the effects of the characteristics of streambed substrate, such as grain size, shape, and roughness, on the composition and biodiversity of macroinvertebrates. A field experiment was done on the Juma River, a second-order mountain stream in northern China. Substrata of cobbles, hewn stones, pebbles, coarse sand, and fine sand were used to replace the original gravel and sand bed in a stretch of 30 m in length. The sampling results indicated that the macroinvertebrate assemblage is significantly affected by the grain size, porosity and interstitial dimension of the substrate, while it is rarely affected by the shape and the surface roughness of the experimental substrata. Macroinvertebrate compositions in cobbles and hewn stones were stable and changed least over time. The taxa richness and density of individuals in the substrata of cobbles, hewn stones, and pebbles are much higher than in those of the coarse sand and fine sand.  相似文献   

7.
Seafloor habitats throughout the world's oceans are being homogenized by physical disturbance. Even though seafloor sediments are commonly considered to be simple and unstructured ecosystems, the negative impacts of habitat homogenization are widespread because resident organisms create much of their habitat's structure. We combine the insight gained from remote sensing of seafloor habitats with recently developed analytical techniques to estimate species richness and assess the potential for change with habitat homogenization. Using habitat-dependent species-area relationships we show that realistic scenarios of habitat homogenization predict biodiversity losses when biogenic habitats in soft sediments are homogenized. We develop a simple model that highlights the degree to which the reductions in the number of species and functional diversity are related to the distribution across habitats of habitat-specific and generalist species. Our results suggest that, by using habitat-dependent species-area relationships, we can better predict variation in biodiversity across seafloor landscapes and contribute to improved management and conservation.  相似文献   

8.
Endemic hantavirus infection impairs the winter survival of its rodent host   总被引:1,自引:0,他引:1  
The influence of pathogens on host fitness is one of the key questions in infection ecology. Hantaviruses have coevolved with their hosts and are generally thought to have little or no effect on host survival or reproduction. We examined the effect of Puumala virus (PUUV) infection on the winter survival of bank voles (Myodes glareolus), the host of this virus. The data were collected by monitoring 22 islands over three consecutive winters (a total of 55 island populations) in an endemic area of central Finland. We show that PUUV infected bank voles had a significantly lower overwinter survival probability than antibody negative bank voles. Antibody negative female bank voles from low-density populations living on large islands had the highest survival. The results were similar at the population level as the spring population size and density were negatively correlated with PUUV prevalence in the autumn. Our results provide the first evidence for a significant effect of PUUV on host survival suggesting that hantaviruses, and endemic pathogens in general, deserve even more attention in studies of host population dynamics.  相似文献   

9.
Establishing protected areas has long been an effective conservation strategy and is often based on readily surveyed species. The potential of any freshwater taxa to be a surrogate for other aquatic groups has not been explored fully. We compiled occurrence data on 72 species of freshwater fishes, amphibians, mussels, and aquatic reptiles for the Great Plains, Wyoming (U.S.A.). We used hierarchical Bayesian multispecies mixture models and MaxEnt models to describe species’ distributions and the program Zonation to identify areas of conservation priority for each aquatic group. The landscape‐scale factors that best characterized aquatic species’ distributions differed among groups. There was low agreement and congruence among taxa‐specific conservation priorities (<20%), meaning no surrogate priority areas would include or protect the best habitats of other aquatic taxa. Common, wideranging aquatic species were included in taxa‐specific priority areas, but rare freshwater species were not included. Thus, the development of conservation priorities based on a single freshwater aquatic group would not protect all species in the other aquatic groups.  相似文献   

10.
11.
人类活动对上海市生物多样性空间格局的影响   总被引:1,自引:0,他引:1  
为了揭示人类活动对城市化地区生物多样性空间格局的影响及其景观生态学机制,文章将上海市作为研究对象,选择3个人类活动指标、3个主要类型生态系统的4个景观特征指标与8个生物多样性指标,探讨人类活动强度、野生动植物生境景观特征及生物多样性三者之间的相互关系。结果显示,人口增长和城市扩张对上海市生物多样性的空间格局产生了显著影响。在上海地区,人口密度较高、交通较为发达的区域,湿地和农田的景观连续性较低,生物多样性也较低,外来入侵物种丰度较高。这表明在快速城市化过程中,人类活动通过改变野生动植物栖息地景观质量来对区域生物多样性产生影响。本研究还显示,经济发展并非一定对生物多样性具有负面影响。因此,在保持经济发展的同时,通过优化产业结构与加强生物多样性管理,可实现对生物多样性有效保护。  相似文献   

12.
Bacteriological examination of certain water bodies and fishes carrying EUS was carried out. As a whole, 17 species of bacteria were isolated from the investigated water bodies and EUS affected fishes. The species of bacteria isolated from fishes are common to those isolated from water. Experimental infection trials conducted suggested that Aeromonas hydrophila in association with Pseudomonas fluorescens, may be playing the role of primary aetiological agent in producing EUS in fishes.  相似文献   

13.
A family of spatial biodiversity measures based on graphs   总被引:1,自引:0,他引:1  
While much research in ecology has focused on spatially explicit modelling as well as on measures of biodiversity, the concept of spatial (or local) biodiversity has been discussed very little. This paper generalises existing measures of spatial biodiversity and introduces a family of spatial biodiversity measures by flexibly defining the notion of the individuals’ neighbourhood within the framework of graphs associated to a spatial point pattern. We consider two non-independent aspects of spatial biodiversity, scattering, i.e. the spatial arrangement of the individuals in the study area and exposure, the local diversity in an individual’s neighbourhood. A simulation study reveals that measures based on the most commonly used neighbourhood defined by the geometric graph do not distinguish well between scattering and exposure. This problem is much less pronounced when other graphs are used. In an analysis of the spatial diversity in a rainforest, the results based on the geometric graph have been shown to spuriously indicate a decrease in spatial biodiversity when no such trend was detected by the other types of neighbourhoods. We also show that the choice of neighbourhood markedly impacts on the classification of species according to how strongly and in what way different species spatially structure species diversity. Clearly, in an analysis of spatial or local diversity an appropriate choice of local neighbourhood is crucial in particular in terms of the biological interpretation of the results. Due to its general definition, the approach discussed here offers the necessary flexibility that allows suitable and varying neighbourhood structures to be chosen.  相似文献   

14.
Global warming is expected to profoundly change the characteristics of freshwater habitats. Increasing evaporation, lower oxygen concentration due to increased water temperatures and changes in precipitation pattern are likely to affect the survival and reproduction of pulmonate freshwater gastropods. Our statistical niche modelling analysis suggests that for a great proportion of the North-West European genera, the range sizes were predicted to decrease by 2,080, even if unlimited dispersal was assumed. The forecasted warming in the cooler northern ranges predicted the emergence of new suitable areas, as well as drastically reduced available habitat in the southern part of the studied region. Phylogenetic signal was inferred for one dimension of the climatic niche. Independent contrast analyses, taking into account the phylogenetic relationships between the taxa, showed a positive correlation between the genera’s climate niche width and the size of future suitable area. In summary, the results predict a profound faunal freshwater gastropod shift for Central Europe, either permitting the establishment of species currently living south of the studied region or permitting the proliferation of organisms relying on the same food resources, if dispersal abilities do not match the rate of climate change.  相似文献   

15.
黄河三角洲生物多样性分析   总被引:9,自引:0,他引:9  
黄河三角洲是我国东部最年轻的陆地,保存着中国暖温带地区最广阔、最完整、最年轻的湿地生态系统。鉴于已有的研究工作对黄河三角洲地区生物多样性通过黄河与周边地区的联系方面的研究相对薄弱,以现有研究工作为基础,以黄河的廊道作用为主线,并结合2003年9月和2004年10月两次实地地面植被调查,主要对黄河三角洲自然保护区的植物区系组成状况进行统计分析,总结出黄河三角洲地区生物多样性状况、植物区系组成的特点及其与周边地区的相互关系。黄河三角洲地区生物多样性主要表现出如下特点:植被结构简单、覆盖度低、生态系统年轻性特点和湿地生态系统特点明显;植物种类少、常具有抗盐、抗旱特性;旱生、中旱生植物以及与内蒙古共有植物种类多,充分体现了黄河的生物廊道作用;主要保护动物种类多,生物多样性保护意义重大。这些特征既反映了黄河三角洲新生陆地的盐化生境特点,同时也深刻揭示了河流通道对区域生物多样性形成的重要作用。  相似文献   

16.
为了解地貌在坡面尺度上对α生物多样性的影响,采用主观采样法在陕北吴起县合家沟流域不同地貌部位进行了样地调查.利用SPSS16.0统计软件先后对各地貌部位物种组成及各物种的重要值、地形因子要素间、地形因子和群落α多样性之间分别做了聚类分析、相关分析和多元回归分析.结果表明:(1)地貌部位相似的群落聚类在一起,说明地形因子是影响物种组成、群落结构、生态系统等的重要因素.(2)海拔和坡位,坡向和坡度,地形指数和海拔、坡位、坡形之间的Pearson 相关系数均大于0.8,双尾显著性检验概率小于0.05.(3)影响α生物多样性指标香农-维纳指数的地形因子按重要性从大到小依次是:坡位、坡向、海拔、坡形、坡度、地形指数,进一步分析得出在黄土高原丘陵沟壑区,沟沿线、光照、土壤水分和养分在影响α生物多样性指标上依次递减.(4)通过多元线形回归检验,得出坡位、坡向、坡形、海拔这四个地形因子与群落α生物多样性关系密切,建立的回归模型显著性检验可信度大,与样本数据的拟合度高.各地形因子数据归一处理后的回归方程为:香农-维纳指数=2.417-0.581×坡形-1.333×坡位+1.449×海拔+0.631×坡向.地形地貌特征在黄土丘陵区表现明显,研究它对生物多样性的影响可为该区植被恢复提供参考,但由于调查样地尺度较小,在应用推广上尚待进一步研究.  相似文献   

17.
In this paper, we investigated: (1) the predictability of different aspects of biodiversity, (2) the effect of spatial autocorrelation on the predictability and (3) the environmental variables affecting the biodiversity of free-living marine nematodes on the Belgian Continental Shelf. An extensive historical database of free-living marine nematodes was employed to model different aspects of biodiversity: species richness, evenness, and taxonomic diversity. Artificial neural networks (ANNs), often considered as “black boxes”, were applied as a modeling tool. Three methods were used to reveal these “black boxes” and to identify the contributions of each environmental variable to the diversity indices. Since spatial autocorrelation is known to introduce bias in spatial analyses, Moran's I was used to test the spatial dependency of the diversity indices and the residuals of the model. The best predictions were made for evenness. Although species richness was quite accurately predicted as well, the residuals indicated a lack of performance of the model. Pure taxonomic diversity shows high spatial variability and is difficult to model. The biodiversity indices show a strong spatial dependency, opposed to the residuals of the models, indicating that the environmental variables explain the spatial variability of the diversity indices adequately. The most important environmental variables structuring evenness are clay and sand fraction, and the minimum annual total suspended matter. Species richness is also affected by the intensity of sand extraction and the amount of gravel of the sea bed.  相似文献   

18.
Fox JW 《Ecology》2006,87(11):2687-2696
Species loss can impact ecosystem functioning, but no general framework for analyzing these impacts exists. Here I derive a general partitioning of the effects of species loss on any ecosystem function comprising the summed contributions of individual species (e.g., primary productivity). The approach partitions the difference in ecosystem function between two sites (a "pre-loss" site, and a "post-loss" site comprising a strict subset of the species at the pre-loss site) into additive components attributable to different effects. The approach does not assume a particular experimental design or require monoculture data, making it more general than previous approaches. Using the Price Equation from evolutionary biology, I show that three distinct effects cause ecosystem function to vary between sites: the "species richness effect" (SRE; random loss of species richness), the "species composition effect" (SCE; nonrandom loss of high- or low-functioning species), and the "context dependence effect" (CDE; post-loss changes in the functioning of the remaining species). The SRE reduces ecosystem function without altering mean function per species. The SCE is analogous to natural selection in evolution. Nonrandom loss of, for example, high-functioning species will reduce mean function per species, and thus total function, just as selection against large individuals in an evolving population reduces mean body size in the next generation. The CDE is analogous to imperfect transmission in evolution. For instance, any factor (e.g., an environmental change) causing offspring to attain smaller body sizes than their parents (imperfect transmission) will reduce the mean body size in the next generation. Analogously, any factor causing the species remaining at the post-loss site to make smaller functional contributions than at the pre-loss site will reduce mean function per species, and thus total function. I use published data to illustrate how this new partition generalizes previous approaches, facilitates comparative analyses, and generates new empirical insights. In particular, the SCE often is less important than other effects.  相似文献   

19.
Globally, offset schemes have emerged in many statutory frameworks relating to development activities, with the aim of balancing biodiversity conservation and development. Although the theory and use of biodiversity offsets in terrestrial environments is broadly documented, little attention has been paid to offsets in stream ecosystems. Here we examine the application of offset schemes to stream ecosystems and explore whether they suffer similar shortcomings to those of offset schemes focused on terrestrial biodiversity. To challenge the applicability of offsets further, we discuss typical trajectories of urban expansion and their cascading physical, chemical and biological impacts on stream ecosystems. We argue that the highly connected nature of stream ecosystems and urban drainage networks can transfer impacts of urbanization across wide areas, complicating the notion of like‐for‐like exchange and the prospect of effectively mitigating biodiversity loss. Instead, we identify in‐catchment options for stormwater control, which can avoid or minimize the impacts of development on downstream ecosystems, while presenting additional public and private benefits. We describe the underlying principles of these alternatives, some of the challenges associated with their uptake, and policy initiatives being trialed to facilitate adoption. In conclusion, we argue that stronger policies to avoid and minimize the impacts of urbanization provide better prospects for protecting downstream ecosystems, and can additionally, stimulate economic opportunities and improve urban liveability.  相似文献   

20.
本文综述了生态系统多样性在生物多样性保护中的意义及5个中心研究问题,即生物群落或生态系统关键种、生物多样性关键地区、生态系统多样性的持续性、受害生态系统的恢复生态学、生态系统多样性保护对策及保护途径。文章还分析和讨论当前国际上有关生态系统多样性保护的对策和实践。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号