首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
零价铁对土壤中4-氯苯酚还原脱氯研究   总被引:12,自引:2,他引:12  
氯苯酚是常见的环境污染物,它们在土壤中的加速分解可以减少对人类健康的危害。以恒温培养为方法,GC-MS为检测手段,研究了在常温常压下土壤中4-氯苯酚(4-CP)在零价铁作用下的还原脱氯反应。结果表明:4-CP可以被来自零价铁的电子还原,零价铁能够有效促进土壤中的4-CP脱除苯环上的氯原子,从而达到降低毒性、增加可生化性目的。反应条件如初始pH、时间、零价铁用量等均对4-CP还原脱氯效率有重要影响,特别是当初始pH值控制在偏酸时更有利于反应的进行。在零价铁加入量500mg、初始pH=4、反应时间7d的条件下,零价铁对土壤中4-CP还原脱氯效率最高可以达到65%。利用实验数据,对零价铁作用下4-CP还原脱氯的反应机理也进行了初步探讨。  相似文献   

2.
As a promising in situ remediation technology, nanoscale zero-valent iron (nZVI) can remove polybrominated diphenyl ethers such as decabromodiphenyl ether (BDE209) effectively, However its use is limited by its high production cost. Using steel pickling waste liquor as a raw material to prepare nanoscale zero-valent metal (nZVM) can overcome this deficiency. It has been shown that humic acid and metal ions have the greatest influence on remediation. The results showed that nZVM and nZVI both can effectively remove BDE209 with little difference in their removal efficiencies, and humic acid inhibited the removal efficiency, whereas metal ions promoted it. The promoting effects followed the order Ni2+>Cu2+>Co2+ and the cumulative effect of the two factors was a combination of the promoting and inhibitory individual effects. The major difference between nZVM and nZVI lies in their crystal form, as nZVI was found to be amorphous while that of nZVM was crystal. However, it was found that both nZVM and nZVI removed BDE209 with similar removal efficiencies. The effects and cumulative effects of humic acid and metal ions on nZVM and nZVI were very similar in terms of the efficiency of the BDE209 removal.  相似文献   

3.
Fe~0体系降解2,4二氯酚的影响因素及其反应机理   总被引:1,自引:0,他引:1  
采用铁屑、炉渣及河砂混合介质降解2,4-二氯酚(2,4-DCP)模拟废水,研究铁屑粒径、铁屑投加量、铁屑与炉渣配比、pH值等因素对2,4-DCP脱氯效果的影响,探讨Fe0体系降解2,4-DCP的反应机理。结果表明,铁屑粒径、铁屑投加量、铁屑与炉渣配比、pH对2,4-DCP脱氯效果均有显著影响,在铁屑粒径为2~5 mm、不改变废水pH、铁屑与炉渣质量比为31∶9条件下,Fe0体系对2,4-DCP去除率高达97%。2,4-DCP经脱氯后主要产物为2-氯酚、4-氯酚和苯酚,反应后废水的可生化性明显提高,利于后续的生物处理。  相似文献   

4.
In this study, two mixtures of municipal compost, limestone and, optionally, zero-valent iron were assessed in two column experiments on acid mine treatment. The effluent solution was systematically analysed throughout the experiment and precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry analysis and, from the column containing zero-valent iron, solid digestion and sequential extraction analysis. The results showed that waters were cleaned of arsenic, metals and acidity, but chemical and morphological analysis suggested that metal removal was not due predominantly to biogenic sulphide generation but to pH increase, i.e. metal (oxy)hydroxide and carbonate precipitation. Retained arsenic and metal removal were clearly associated to co-precipitation with and/or sorption on iron and aluminum (oxy)hydroxides. An improvement on the arsenic removal efficiency was achieved when the filling mixture contained zero-valent iron. Values of arsenic concentrations were then always below 10 μg/L.  相似文献   

5.
• Biochar supported nanoscale zero-valent iron composite (nZVI/BC) was synthesized. • nZVI/BC quickly and efficiently removed nitrobenzene (NB) in solution. • NB removal by nZVI/BC involves simultaneous adsorption and reduction mechanism. • nZVI/BC exhibited better catalytic activity, stability and durability than nZVI. The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZVI was distributed on oak sawdust-derived biochar (BC) to obtain the nZVI/BC composite for the highly efficient reduction of nitrobenzene (NB). nZVI, BC and nZVI/BC were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For nZVI/BC, nZVI particles were uniformly dispersed on BC. nZVI/BC exhibited higher removal efficiency for NB than the simple summation of bare nZVI and BC. The removal mechanism was investigated through the analyses of UV-Visible spectra, mass balance and XPS. NB was quickly adsorbed on the surface of nZVI/BC, and then gradually reduced to aniline (AN), accompanied by the oxidation of nZVI to magnetite. The effects of several reaction parameters, e.g., NB concentration, reaction pH and nZVI/BC aging time, on the removal of NB were also studied. In addition to high reactivity, the loading of nZVI on biochar significantly alleviated Fe leaching and enhanced the durability of nZVI.  相似文献   

6.
• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system. • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles. • Functional microbial communities could be enriched in coupled anaerobic system. • Possible synergistic mechanism involved in enhanced dechlorination was proposed. Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.  相似文献   

7.
Although nanoscale zero-valent iron (nano-Fe0) is used to remediate pollutants, this reagent still presents stability and reactivity issues. To solve those issues, we synthesized bentonite-supported nanoscale iron bimetals B-Fe/Ni and B-Fe/Pd. We then used those reagents to degrade the methyl orange dye in water. Results of scanning electron microscopy and X-ray diffraction showed that the presence of bentonite and bimetal decreased nanoscale iron aggregation and increased methyl orange removal efficiency. More than 90 % of methyl orange at 100 mg/L was degraded by B-Fe/Ni (0.15 g/L) in 10 min. By comparison, only 62 % of methyl orange was degraded by B-Fe, and 35 % of methyl orange was degraded by nano-Fe0. The degradation rate decreased with the increase of the initial concentration of methyl orange. Lower pH allowed fast removal of methyl orange. Overall our findings show that a nanoscale Fe/Ni on bentonite-supported material is more efficient than nano-Fe0. One-step synthesis is more convenient than current two-step-synthesized nanoscale bimetals. Bentonite-supported nanoscale bimetals could therefore be an economic competitive candidate for contaminated water remediation.  相似文献   

8.
膨润土负载纳米铁用于降解水体中阿莫西林   总被引:2,自引:0,他引:2  
采用液相还原法合成膨润土负载纳米铁(B-nZVI)和纳米铁(nZVI)并用于降解水中的阿莫西林.实验结果表明,无论是单独nZVI还是B-nZVI都能有效降解阿莫西林.在25 mL浓度为20 mg.L-1的阿莫西林溶液中加入0.1 g的B-nZVI(其中nZVI的含量为0.05 g),溶液的初始pH值为6.65,摇床的振荡速率为250 r.min-1,反应温度为25℃,反应时间为120 min的条件下,B-nZVI对阿莫西林的降解效率高达93.1%,在此实验条件下,单独nZVI(0.05 g)对阿莫西林的降解效率只有82.3%,这是由于膨润土对nZVI起到分散作用,从而使B-nZVI的反应活性得到提高.降解动力学研究表明,B-nZVI对阿莫西林的降解过程符合表观一级反应动力学规律,相关系数R2均大于0.945.B-nZVI可多次重复用于降解阿莫西林.  相似文献   

9.
Nanoscale zero-valent iron, named nano-Fe0, is a reagent used to degrade trichloroethylene in groundwater. However, the efficiency of nano-Fe0 is moderate due to issues of dispersion and reactivity. As an alternative we synthesized bentonite-supported nanoscale Fe/Ni bimetals, named bentonite-Fe/Ni, to test the degradation of trichloroethylene in the presence of Suwannee River humic acids, as a representative of natural organic matter. 0.1 mmol/L trichloroethylene was reacted with 0.5 g/L of nano-Fe0, bentonite-Fe, Fe/Ni, and bentonite-Fe/Ni nanoparticles. Results show first that without humic acids the reaction rate constants k obs were 0.0036/h for nano-Fe0, 0.0101/h for bentonite-Fe, 0.0984/h for Fe/Ni, and 0.181/h for bentonite-Fe/Ni. These findings show that bentonite-Fe/Ni is the most efficient reagent. Second, the addition of humic acids increased the rate constant from 0.178/h for 10 mg/L humic acids to 0.652/h for 40 mg/L humic acids, using the bentonite-Fe/Ni catalyst. This finding is explained by accelerated dechlorination by faster electron transfer induced by humic quinone moieties. Indeed, the use of 9, 10-anthraquinone-2, 6-disulfonate as a humic analogue gave similar results.  相似文献   

10.
壳聚糖稳定纳米铁去除地表水中Cr(Ⅵ)污染的影响因素   总被引:1,自引:0,他引:1  
以壳聚糖为稳定剂,制备纳米零价铁颗粒,TEM表征结果显示:其粒径分布范围为20—150 nm,平均粒径为82.4 nm.研究表明,壳聚糖稳定的纳米铁去除Cr(Ⅵ)的还原反应符合一级反应动力学方程.溶液中投加稳定剂壳聚糖,当壳聚糖浓度为150 mg.l-1时,80 min内表观一级动力学常数kobs约为空白溶液的2倍;干扰离子Ca2+,Mg2+,HCO3-和CO32-对壳聚糖稳定纳米铁去除Cr(Ⅵ)的批试验结果显示,Ca2+和Mg2+在80 min内使壳聚糖稳定纳米铁对Cr(Ⅵ)去除率分别降低了约20%和10%;HCO3-和CO32-的存在使去除率降低了约10%.  相似文献   

11.
Organic compounds such as chlorobenzene cannot be effectively decomposed with currently available biological and chemical treatment methods. Preliminary studies show that nano-scale zero-valent iron particles irradiated by microwave is effective in decomposing chemically refractive organic compounds such as chlorobenzene. In this study, microwave is applied to enhance chlorobenzene removal using micron-scale iron particles and nano-scale zero-valent iron particles suspended in the chlorobenzene solution as the dielectric media. The results show that better chlorobenzene removal can be achieved when the chlorobenzene solution is irradiated with 250 W microwave for 150 s than without microwave irradiation. The microwave radiation increases iron reaction rate and surface activity, thus enhancing the chlorobenzene removal. The microwave-induced iron particles cause the chlorobenzene activation energy to drop 34.0% for micron-scale iron and 16.1% for nano-scale zero-valent iron. They can remove 13.6 times more chlorobenzene for micro iron, and 3.6 times more chlorobenzene for nano iron. We have demonstrated that the microwave-induced nano-scale iron particles are effective in treating toxic organic substances as demonstrated in this laboratory study.  相似文献   

12.
The kinetics of Cr(VI) reduction to Cr(III) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(VI) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (< 200 mesh) in 120 min). The reduction of hexavalent chromium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(VI) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coefficients (k obs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min?1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25°C and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min?1 were obtained at the temperature range of 288–308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticles > Fe0 nanoparticles > Fe0 powder > Fe0 filings. Electrochemical analysis of the reaction process showed that Cr(III) and Fe(III) hydroxides should be the dominant final products.  相似文献   

13.
零价铁对土壤中间氯硝基苯和间硝基甲苯的还原研究   总被引:1,自引:0,他引:1  
常温常压下,利用零价铁(ZVI)对土壤中间氯硝基苯(MCNB)和间硝基甲苯(MNT)2类污染物进行了修复研究.结果表明:ZVI能有效将MCNB和MNT还原为相应的苯胺类化合物,无进一步脱氯或脱甲基反应发生.反应时间、土壤含水量、土壤初始pH值、ZVI用量和反应温度均对还原效果有较明显的影响,当土壤中2种污染物各自浓度约为2.5×10-6 mol·g-1,ZVI加入量为25 mg·g-1,土壤含水量为0.75 mL·g-1,初始pH值为6.8时,(25±1) ℃条件下反应5 h后,2种化合物的还原率均达到80%以上,较长的反应时间、偏酸性的土壤、较高的温度、ZVI用量的增加以及饱和的土壤含水量均能显著提高还原率.  相似文献   

14.
研究了纳米零价铁协同微生物降解水溶液中的PCB77。从污染土样中分离出一株多氯联苯(PCBs)降解菌,对其进行革兰氏染色形态观察,并用降解菌降解PCB77。结果表明:培养温度30℃、溶液pH 7.0、微生物接种量109 cfu·mL-1、PCB77初始质量浓度1.0 mg·L-1时,降解菌对PCB77的降解率为58.63%。纳米零价铁对PCB77的降解是一个还原脱氯过程,7 d时的降解率为82.99%。采用纳米零价铁/微生物联合体系降解水溶液中PCB77,降解率显著高于微生物和纳米零价铁单一体系,降解率可达93.30%。研究结果将为环境中PCBs残留提供了一种高效去除的方法,并为PCBs污染土壤的修复提供理论依据。  相似文献   

15.
零价铁还原和过硫酸盐氧化联合降解水中硝基苯   总被引:3,自引:0,他引:3  
杨世迎  杨鑫  梁婷  马楠  王平 《环境化学》2012,31(5):682-686
将零价铁(Fe0)的还原和过硫酸盐(persulfate,PS)的高级氧化技术结合用于水中难降解有机污染物硝基苯的去除.研究结果表明,Fe0在常温常压下可将硝基苯还原生成苯胺,随着Fe0投加量的增加,硝基苯还原为苯胺的速率逐渐增大.PS本身对硝基苯氧化作用不明显,但在Fe0与PS二者联合体系中,硝基苯和苯胺同时被去除,而且随着PS投加量的增加二者被去除的速度也随之增加.在Fe0还原和PS氧化联合处理硝基苯的体系中可能存在两个过程,一是Fe0还原硝基苯产生苯胺和二价铁离子Fe2+,二是Fe2+催化PS产生强氧化性的硫酸根自由基将苯胺氧化降解.  相似文献   

16.
DDT—1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane—is a pesticide that has been widely used to control insects in agriculture. TCP—2,4,6-trichlorophenol—has been used in pesticide formulations as a preservative, disinfectant and antiseptic. Detoxification of DDT and TCP is very difficult due to their stable chemical structure. Here, a mixture of NaBH4 and Devarda alloy was applied for the first time to detoxify DDT and TCP. Results show 94 % dechlorination of DDT at 100 °C and 97 % dechlorination of TCP at 80 °C. The presence of diphenyl ethane suggests the complete dechlorination of DDT. The formation of benzene suggests a strong reduction. The method is efficient, cost-effective and may be applied at the industrial-level.  相似文献   

17.
The aim of this study was to examine the production of nanoscale ions via the liquid phase reduction method and the effectiveness of the removal of nitrate nitrogen (NO3?–N) as well as measure the products and kinetics of the reactions. The nanoparticles obtained were approximately 50 nm in diameter and the main component was iron (Fe). This custom-made nanoscale Fe was highly positively charged, and reacted rapidly with NO3?–N in oxygen-free and neutral conditions at room temperature. A 90% removal rate was achieved when the reaction occurred for 30 min in simulation sample water with vigorous shaking at 250 r/min at NO3?–N concentrations of 30, 50, 80 or120 mg N/L. The nanometer Fe dosage was maintained throughout the experiment at 4 g/L. A first-order kinetics equation was applied to the obtained experimental data which followed a pseudo first-order reaction. Data demonstrated that the removal of nitrate nitrogen from polluted groundwater using a nanoscale Fe iron was effective and rapid.  相似文献   

18.
This paper reports the biosynthesis of nanoscale zero-valent iron (nZVI) using the extracts of Shirazi thyme leaf (Th-nZVI) and pistachio green hulls (P-nZVI). Scanning electron microscopy verified the successful synthesis of the poorly crystalline nZVI with a spherical shape and diameter in the range of 40–70 nm. According to X-ray diffraction and Fourier transform infrared spectroscope analyses, the synthesised nZVI were composed of iron oxides nanoparticles and ployphenol obtained from Shirazi thyme leaf and pistachio green hulls extracts acting as both reducing and capping agents. The phosphorus removal efficiency of Th-nZVI and P-nZVI increased with time and reached equilibrium at about 4 and 2h, respectively. Sorption of phosphorus on both sorbents was observed to be pH-dependent with maximum phosphorus removal occurring in the pH range of 2–5. Langmuir, Freundlich, Redlich–Peterson, and Temkin models were used to describe phosphorus sorption at pH 5 and maximum sorption capacity for Th-nZVI and P-nZVI was about 40.52 and 29.33?mg?g?1, respectively. Correlation coefficient (R2) and standard errors of estimate showed that the Elovich model was better than other models at describing the kinetic data. These results suggested that the synthesised nZVI with Shirazi thyme leaf and pistachio green hulls extracts could be employed as an efficient sorbent for the remediation of phosphorus from contaminated water sources.  相似文献   

19.
A mixed microbial population in digested sewage culture under strict anaerobic conditions degraded TNT (2,4,6‐trinitrotoluene) effectively. An initial concentration of 110 mg/L of TNT was reduced to a non‐detectable amount (> 99% removal) in 6 days of incubation. Red color due to the electron charge of NO2 groups becomes colorless after 6 days of incubation, while the autoclave control remained red in color. Further stepwise deamination and subsequent mineralization by ring cleavage occurred by mixed nitroreductase which is available from many of the denitrifying bacteria predominantly in sewage culture.  相似文献   

20.
The mineralization and detoxification of 4-chlorophenol (4-CP) were studied using a TiO2-paper/sunlight system. The possibility of reusing the photocatalyst was examined to determine the cost effectiveness of the method. Experiments were performed to establish optimum conditions for 4-CP removal. Phytotoxicity of photo-treated and raw 4-CP (100 mg L?1) solutions on seed germination and plant growth were carried out with the aim of water reuse and environment protection. The seeds irrigated with raw 4-CP solution showed lower sprout length while increase in sprout length was observed with the photo-treated solution for tomato (Lycopersicon esculentum), lettuce (Lactuca sativa), onion (Allium cepa), and turnip (Brassica rapa). Plant growth tests with the photo-treated 4-CP solution did not affect the leaf numbers compared to those irrigated with tap water. Photo-treated 4-CP solution can be used for irrigation in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号