首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   

2.
The continuously increasing production of municipal solid waste incineration bottom ash (MSWIBA) has promoted its utilization as construction material and raised environmental concern. The physico-chemical properties and leaching behavior of MSWIBA were studied, and ecotoxicological testing using a luminescent bacterium bioassay was performed to assess the ecological pollution risks associated with its leached constituents. The MSWIBA was leached by two types of leachants, H2SO4/HNO3 and HAc solution, at different liquid to solid ratios and contact times. The concentrations of heavy metals and anions in the leachates were analyzed. Multivariate statistical analyses, including principle component analysis, Pearson's correlation analysis and hierarchical cluster analysis, were used to evaluate the contributions of the constituents to the toxicity (EC50) of the MSWIBA leachate. The statistical analyses of the ecotoxicological results showed that the Ba, Cr, Cu, Pb, F and total organic carbon (TOC) concentrations were closely correlated with the EC50 value, and these substances were the main contributors to the ecotoxicity of the MSWIBA leachate. In addition, the cluster of these variables indicated similar leaching behaviors. Overall, the research demonstrated that the ecotoxicological risks resulting from MSWIBA leaching could be assessed before its utilization, which provides crucial information for the adaptation of MSWIBA as alternative materials.  相似文献   

3.
Release of elements from municipal solid waste incineration fly ash   总被引:1,自引:0,他引:1  
The element-release behavior of municipal solid waste incineration fly ash was explored through leaching test with continuous set-point pH (pHstat test) and serial single reaction cell (SSRC) tests. First, the relationship between element release and acid neutralizing capacity (ANC) consumption was examined with a pHstat test. Four types of release behaviors were identified which are characteristic for different elements: (1) release curves that were almost linear with ANC consumption (Ca, Zn, and Cd); (2) release that was significantly faster than ANC (Na, K, and Cl); (3) curves that featured a strong increase with ANC consumption, after a transient release, followed by an almost equal decrease (Si and S); and (4) release that is strongly retarded compared with ANC consumption (Cr, Cu, and Pb). In the SSRC system, it the existence of a pH front and a wash-out phenomenon is demonstrated. Combining the results from the SSRC test with the kinetic analysis of the ANC system in the pHstat test, it was inferred that less than one-third of the ANC measured from a batch pH titration plays a neutralization role in a field situation. The methodologies described may provide a powerful set of tools for systematic evaluation of element release from solid wastes.  相似文献   

4.
The fate and partitioning of heavy metals (including Hg, Cd, Pb, Zn, As, Cr, Ni, and Cu) from MSW incinerators located in Taiwan were determined. Results of stack sampling indicate that most Hg and As (more than 80%) exists in the gas phase while other metals partition differently among bottom ash, fly ash, and flue gases. Removal efficiencies of existing air pollution control devices for Hg and As are lower (about 70%) than other metals. Bottom ash contains higher concentration of Cd compared with European incinerators. In addition, strong enrichment of Cd on fly ash particles is observed.  相似文献   

5.
不同粒径垃圾焚烧飞灰中重金属富集特性表征   总被引:3,自引:0,他引:3  
针对杭州市生活垃圾焚烧飞灰按粒径级别进行其重金属特性表征,主要展开飞灰组成元素和矿物成分、重金属含量分布、以及重金属与飞灰颗粒的微观结合行为等研究.结果表明,"SiO2-CaO-Al2O3-金属氧化物"体系构成了重金属的富集载体;Zn、Pb、Cu、Mn、Ni、Cr、Sb等重金属在75—125μm飞灰颗粒中的占有率最高,达52%;Zn、Cu、Cr随着粒径减小其含量显著增加,其它重金属未见此趋势;通过SEM-EDX对飞灰颗粒表面和断面进行扫描电镜观察和面、线扫描元素能谱分析,在飞灰断面发现了更多类型、更密集的重金属分布.通过结合XRF、ICP-MS、SEM-EDX等仪器手段分析飞灰中重金属富集特性,深入探索重金属在飞灰颗粒中富集特征.  相似文献   

6.
The aim of this study was to assess the toxicity reduction of wastewaster after treatment with fly ash. Fly ash is a waste material which is formed as a result of coal burning in power plants, but has the potential to adsorb heavy metal ions. The present study examined the adsorption capacity of fly ash to adsorb Pb2+, Cu2+, and Zn2+ from waste water under different conditions of contact time, pH, and temperature. Uptake of metal ions by fly ash generally rose with increasing pH. At lower temperatures the uptake of heavy metal adsorption were enhanced. Significant reduction in Pb2+ (79%), Cu2+ (53%), and Zn2+ (80%) content was found after treatment with fly ash of waste water treatment. Using the microtox test toxicity of the effluent was reduced by 75% due to removal of Pb2+ ion by the fly ash. Data indicated that fly ash generated by power plants may be used beneficially to remove metals from waste water.  相似文献   

7.
以铅锌废渣为研究对象,采用水泥、粉煤灰为固化剂,生石灰为稳定剂,对废渣进行固化/稳定化处理,并通过TCLP和Tessier连续提取法对固化/稳定化效果进行分析和评价.结果表明,单独添加水泥或水泥、粉煤灰混合固化处理废渣时,重金属铅TCLP浸出浓度显著减少,但达不到安全填埋要求;当稳定剂生石灰添加量为4%(废渣),固化剂废渣比为0.4∶1(粉煤灰与水泥比为1∶9)时,固化/稳定化效果最佳.此时,固化体中重金属Pb、Zn的浸出浓度分别为0.16 mg·L-1、0.243 mg·L-1,符合安全填埋要求.经过固化/稳定化处理后,降低了废渣中的重金属Pb、Zn交换态比例,有效地限制了重金属的迁移.XRD和SEM分析表明,废渣固化/稳定化后形成的Ca(OH)2、水化硅酸钙凝胶(C—S—H)及钙矾石等物质将重金属离子包容起来,形成稳定的固化体.  相似文献   

8.
The present investigation deals with the accumulation of heavy metals in fields contaminated with fly ash from a thermal power plant and subsequent uptake in different parts of naturally grown plants. Results revealed that in the contaminated site, the mean level of all the metals (Cd, Zn, Cr, Pb, Cu, Ni, Mn and Fe) in soil and different parts (root and shoots) of plant species were found to be significantly (p<0.01) higher than the uncontaminated site. The enrichment factor (EF) of these metals in contaminated soil was found to be in the sequence of Cd (2.33) > Fe (1.88) > Ni (1.58) > Pb (1.42) > Zn (1.31) > Mn (1.27) > Cr (1.11) > Cu (1.10). Whereas, enrichment factor of metals in root and shoot parts, were found to be in the order of Cd (7.56) > Fe (4.75) > Zn (2.79) > Ni (2.22) > Cu (1.69) > Mn (1.53) > Pb (1.31) > Cr (1.02) and Cd (6.06) approximately equal Fe (6.06) > Zn (2.65) > Ni (2.57) > Mn (2.19) > Cu (1.58) > Pb (1.37) > Cr (1.01) respectively. In contaminated site, translocation factor (TF) of metals from root to shoot was found to be in the order of Mn (1.38) > Fe (1.27) > Pb (1.03) > Ni (0.94) > Zn (0.85) > Cd (0.82) > Cr (0.73) and that of the metals Cd with Cr, Cu, Mn, Fe; Cr with Pb, Mn, Fe and Pb with Fe were found to be significantly correlated. The present findings provide us a clue for the selection of plant species, which show natural resistance against toxic metals and are efficient metal accumulators.  相似文献   

9.
利用废弃物作为代替原料煅烧水泥已广泛应用于水泥生产,但其带来的环境污染问题不容忽视。以利用废弃物生产水泥的厂家为研究对象,采用原子吸收分光光度法检测所采集样品中重金属Pb、Cd的含量,对水泥生产过程中重金属Pb、Cd的逸放及其对周围土壤的污染进行研究。研究结果表明:利用废弃物煅烧水泥的过程中,重金属Pb、Cd的逸放率很高,其中立窑的Pb、Cd逸放率高达84%~90%。湿法回转窑的Pb、Cd逸放率达到63%~74%;在水泥厂上下风向500m、1000m和2000m处采集土壤样品,工厂周围的土壤均已受到不同程度的重金属污染,位于工厂下风向的土壤受到的污染更为严重,距离工厂500m处土壤中重金属Pb、Cd的含量均超过了国家标准的最大限量;对几家工厂员工的头发进行随机取样,头发样品中Pb含量均超过正常限量:  相似文献   

10.
利用废弃物煅烧水泥时重金属Pb、Cd的逸放污染   总被引:2,自引:0,他引:2  
利用废弃物作为代替原料煅烧水泥已广泛应用于水泥生产,但其带来的环境污染问题不容忽视。以利用废弃物生产水泥的厂家为研究对象,采用原子吸收分光光度法检测所采集样品中重金属Pb、Cd的含量,对水泥生产过程中重金属Pb、Cd的逸放及其对周围土壤的污染进行研究。研究结果表明:利用废弃物煅烧水泥的过程中,重金属Pb、Cd的逸放率很高,其中立窑的Pb、Cd逸放率高达84%~90%,湿法回转窑的Pb、Cd逸放率达到63%~74%;在水泥厂上下风向500m、1000m和2000m处采集土壤样品,工厂周围的土壤均已受到不同程度的重金属污染,位于工厂下风向的土壤受到的污染更为严重,距离工厂500m处土壤中重金属Pb、Cd的含量均超过了国家标准的最大限量;对几家工厂员工的头发进行随机取样,头发样品中Pb含量均超过正常限量。  相似文献   

11.
● A higher sulfur content reduced the curing rate of Cr in glass. ● Depolymerization increased the amounts of heavy metals in the carbonate bound state. ● Reducing the CaO/SiO2 ratio increased the proportion of stable heavy metals. This work designed a new CaO-Al2O3-SiO2-SO3 glass for the immobilization of multiple heavy metals found in dechlorinated fly ash having high amounts of calcium and sulfur. Increasing the (CaO + SO3)/SiO2 mass ratio (M(CS/S)) from 0.28 to 0.85 was found to lower the proportions of Mn, Ni and Zn in an unstable state, while an M(CS/S) ratio of 0.51 gave the lowest proportions of unstable Cr and Pb. Decreasing the degree of polymerization of the glassy network increased the proportions of Mn, Cr, Ni, Pb and Zn in the carbonate bound state. The leaching out of metals in this state was the primary cause of degradation of Q3 structural units in the glassy network. The amount of Mn in the iron-manganese oxide bound state was increased by increasing the number of Q2 units in the silicate network. Decreasing the CaO/SiO2 mass ratio (M(C/S)) raised the proportions of Mn, Ni and Zn in the unstable state. An M(C/S) value of 0.43 lowered the proportions of unstable Cr and Pb. A principal components analysis determined that the leaching of toxic heavy metals from the glass was primarily related to the proportions of these metals in the unstable state while there were no evident correlations between leaching and the proportions in stable states.  相似文献   

12.
Researches on the hydrothermal treatment of municipal solid waste incineration (MSWI) fly ash were conducted to eliminate dioxins and stabilize heavy metals. In order to enhance decomposing polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) during hydrothermal process, a strong reductant carbohydrazide (CHZ) is introduced. A hydrothermal reactor was set up by mixing raw MSWI fly ash or the pre-treated fly ash with water and then heated to a pre-set temperature; CHZ was spiked into solution according to specially defined dosage. Experimental results showed that under the temperatures of 518 K and 533 K, the decomposition rates of PCDDs/PCDFs were over 80% and 90%, respectively, by total concentration. However, their toxic equivalent (TEQ) decreased only slightly or even increased due to the rising in concentration of congeners 2, 3, 7, 8-TCDD/TCDF, which might be resulted from the highly chlorinated congeners losing their chlorine atoms and being degraded during the hydrothermal process. Better results of TEQ reduction were also obtained under the higher tested temperature of 533 K and reactor with addition of 0.1%wt CHZ was corresponded to the best results. Good stabilization of heavy metals was also obtained in the same hydrothermal process especially when ferrous sulphate was added as auxiliary agent.  相似文献   

13.
• Municipal solid waste (MSW) was fermented, screened, gasified, then co-processed. • Co-processing MSW in cement kilns could cause excessive pollutant emissions. • Bypass flue gas can be disposed of through the main flue system. • Popular MSW co-processing methods do not affect cement quality. Cement kiln co-processing techniques have been developed in the past 20 years in China, and more than 60 factories now use fermentation, screening, and gasification pre-treatment techniques to co-process municipal solid waste (MSW). There three complete MSW pre-treatment techniques, co-processing procedures, and environmental risk assessments have been described in few publications. In this study, we assessed the effectiveness of each technique. The results suggested that the pollutant content released by each pre-treatment technology was lower than the emission standard. To reveal the mechanisms of pollutant migration and enrichment, the substances in the kiln and kiln products are investigated. The input of co-processing materials (Co-M) produced by fermentation caused formation of polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/Fs) in the bypass flue gas (By-gas) in excess of the regulatory standard. The Co-M input produced by the screening and gasifier technologies caused the total organic carbon (TOC) concentration to exceed the standard. In addition, the NOx, TOC, and PCDD/Fs in the By-gas exceeded the regulatory standard. Raw meal was the primary chlorine and heavy metals input stream, and clinker (CK) and cement kiln dust (CKD) accounted for>90% of the total chlorine output stream. Flue gas and CKD were the primary volatile heavy metal (Hg) output streams. Greater than 70% of the semi-volatile heavy metals (Cd, Pb, Tl and Se) distributed in hot raw meal and bypass cement kiln dust. The low-volatility heavy metals were concentrated in the CK. These results indicated that co-processing techniques used in China still require improvement.  相似文献   

14.
采集了长沙市污水厂的剩余污泥(S1)和湿法氧化聚沉工艺处理的深度脱水污泥(S2),对比分析了处理前后污泥的形貌变化及重金属Zn、Cu、Pb、Cd、Hg和As的形态分布,初步探讨了重金属稳定化机理,对脱水污泥中重金属Zn、Cu、Pb、Cd、Hg和As进行了稳定性评估.结果表明,脱水污泥中重金属的总量均低于我国污泥农用标准中的酸性限值,符合B级污泥泥质要求.处理后,污泥中Zn、Cu、Pb、Cd、Hg和As主要以硫化物有机结合态和残渣态(稳定态)存在,不稳定态在不同程度上向稳定态发生了转变,Cu、Hg的增幅最大,达21.1%.S2中重金属的生物可利用性较S1都有显著的降低,平均降幅达73.1%,S2中重金属的生物可利用性顺序为:Zn〉Pb〉Cu〉Cd〉As〉Hg.污泥经过湿法氧化聚沉工艺处理后,污泥中重金属Zn、Cu、Pb、Cd、Hg和As得到了明显的稳定化,为污泥后续资源化、安全化提供了科学依据.  相似文献   

15.
Quantification of carbonate contents in fresh and weathered municipal solid waste incinerator (MSWI) bottom ash was performed using volumetric and gravimetric methods, Fourier Transform Infrared (FT-IR) spectroscopy and thermal analysis. Results differ considerably depending on the method applied. Volumetric measurement and thermogravimetry (TG) are based on the determination of CO2 release by acid or thermal treatment, respectively. Interactions of CO2 with the mineral matrix and de novo synthesis of carbonates during thermal analysis were observed. In order to find out the contribution of CO2 released from residual organic matter, an additional experiment was carried out to demonstrate how the material is affected by the heating process in the course of thermal analysis. FT-IR spectroscopy as a non-destructive method seems to provide the most reliable quantitative results.  相似文献   

16.
Polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/DFs) and coplanar polychlorinated biphenyls (Co‐PCBs) were determined in fly ash samples from municipal solid waste (MSW), medical waste (MW), and electricity power plant incinerators in Taiwan. The average concentrations of PCDD/DFs and Co‐PCBs are 7.02 ng‐TEQ/g and 1.06 ng‐TEQ/g, respectively. The contributions to total TEQ are 24% from PCDDs, 64% from PCDFs, and 12% from Co‐PCBs, indicating that PCDFs generate the highest environmental impact and MSW and MW incinerators are potential Co‐PCBs contaminating sources. The levels of PCDD/DFs and Co‐PCBs found in ash samples increase from petroleum‐fired, coal‐fired, large municipal solid waste, small medical waste, to small municipal solid waste incinerators, and are generally lower than those from incinerators built earlier. All fly ash samples analyzed in this study were considered hazardous materials. More research is suggested to establish the relationship between the amounts of PCDD/DFs and Co‐PCBs in fly ash and in flue gas.  相似文献   

17.
The heavy metals in non-burnt bricks made from municipal solid waste (MSW) gasification slags with a modified European Bureau Community of Reference procedure were studied. Heavy metals were present in the form of oxidizable and residual fractions, which were stable and not easy to dissolve. The preparation process of non-burnt bricks displayed prominent solidification effect for some heavy metals in the gasification slag. The solidified rate for metals, such as As, Cd, Cr, Ni, and Zn reached 89.82%, 79.57%, 73.64%, 66.73%, and 88.05%, respectively. Moreover, the leaching concentrations of eight heavy metals were all below 8 mg/kg. On the basis of these observations, the risk of exposure to heavy metals in non-burnt bricks was evaluated using the solidification formula and the leaching concentration of heavy metals combined with the assessments of the Hakanson potential ecological risk and pollution ratio of secondary phase and primary phase. Results showed that the preparation of MSW gasification slag non-burnt bricks was not harmful to the environment, but attention is warranted for possible migration of heavy metal cadmium (Cd) in the long term, which may result in an impact on the ecological environment.  相似文献   

18.
磷酸镁水泥(MPC)作为一种新型无机胶凝材料,是由过烧氧化镁和磷酸盐通过酸碱中和反应制备得来,具有早期强度高、结构紧密和体积形变小等优点,在固化/稳定化重金属方面受到广泛关注,但存在放热量大、凝结速度快等缺点.本文归纳了国内外学者对磷酸镁水泥固化/稳定化重金属和重金属污染土的研究,重点讨论重金属离子对磷酸镁水泥抗压强度...  相似文献   

19.
城市污泥好氧堆肥过程中重金属的形态转化   总被引:5,自引:0,他引:5  
城市污泥是一种富含作物生长需要的多种养分的生物固体废弃物,但重金属问题又成为影响污泥农用的关键因素,而重金属的生物活性、迁移性及毒性不仅取决于总量,很大程度上取决于其存在的形态.该实验通过调节城市污泥的水分和C/N比,利用笔者所在课题组自行开发的好氧堆肥反应器进行城市污泥堆肥处理,经过为期20 d的好氧堆肥处理,研究堆肥前后污泥中的重金属总量和化学形态的变化.实验结果表明:堆肥处理由于添加能源调理剂等,使堆肥产品中的重金属含量低于原污泥,符合了农用污泥污染物控制标准;同时堆肥也改变了重金属的化学形态,降低了剧毒性的Cd的生物有效性.对污泥及堆肥的重金属形态研究发现:大部分重金属主要以残渣态形式存在,生物毒性很小,农用时的重金属污染度也很低.  相似文献   

20.
镍钴采选废石和尾矿中重金属的溶出释放规律对矿区的重金属污染防治具有重要意义。但目前,国内还没有对镍钴行业采选产生的尾矿和废石中重金属的溶出规律开展研究。本文以镍钴采选企业的尾矿和废石作为样本,开展了毒性浸出实验。研究了不同pH值、离子强度、温度等实验条件对重金属溶出的影响,探讨了镍钴采选过程中所产生的尾矿和废石中重金属的溶出特性和释放规律。实验结果表明,尾矿样品中Ni的浸出浓度为42.28 mg·L^-1,是最大允许排放浓度的8.86倍,为具有浸出毒性特征的危险废物;废石样品中重金属Ni和Cu的溶出浓度分别为4.72 mg·L^-1和26.2 mg·L^-1,超过最大允许排放浓度,属于第Ⅱ类一般工业固体废物。pH对样品中Ni、Cr、Pb、Co和As的溶出量影响较大,其中尾矿中Ni和Cu在pH较低的条件下,可达到44.28 mg·L^-1和53 mg·L^-1,远高于最大允许排放浓度,而Hg、Cd和Cu的溶出量随pH值的变化不大。除As以外,样品中大多数重金属的溶出质量浓度在酸性条件下比在中性条件下高,这表明在酸性环境条件下,这些重金属对周围生态环境的潜在风险更大。离子强度的变化对Cd和Co的溶出量的变化并不明显,而当离子强度变化时,Ni、Cr、Pb、Hg、Cu和As的溶出量可能达到最大,使周围环境的潜在生态风险增大。当温度达到35~40℃时,部分重金属如Co、Pb、Cd 等,溶出量将达到最大;当温度低于25℃时,除 Ni 以外,大部分重金属溶出量很低。而温度变化对重金属Cu、As、Cr和Hg的溶出量的影响不明显,波动范围较小,对周围生态环境产生的潜在生态风险较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号