首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations in 23 pine stands, a widespread type of forest on sandy soils in Northern Germany, were made to compare the concentration of the total N in pine needles, the overall rates and concentrations of nitrogen in precipitation water (NH4?N+NO3?N) to concentrations of total N in shoots ofPleurozium schreberi (Brid.) Mitt., a common bryophyte in these forests. Within the investigation period from 1996 to 1998, a total deposition of nitrogen in a range from 10 to 32 kg ha?1a?1 and mean values of nitrogen concentrations in the precipitation water between 2.8 and 6.9 ppm were observed. N concentrations in both bryophytes and pine needles also varied in a large scale from 1.3 to 2.3% d.wt. High correlations between concentrations of total N in moss tissue and total N concentrations in pine needles (r2=0.75, p<0.001) as well as N concentrations in the precipitation water (r2=0.81, p<0.001) were found. Lower correlations of N concentrations inPleurozium with overall rates of nitrogen calculated for the year before moss sampling in 1997 until 1999 can be attributed to temporary variations of N concentrations in precipitation due to different amounts of rainfall. Comparing the results of only one year (1998), the correlation was higher (r2=0.86). The role of other effects, e.g. growth rate and dry deposition, is discussed as well. Aside from the monitoring of heavy metals and organic compounds,Pleurozium schreberi is seen to be a useful indicator for estimating the amount of N deposition.  相似文献   

2.
The northern range limit of the intertidal limpet Lottia scabra is Cape Arago, Oregon (43°N), where adult survival is excellent, the population is small (<300), and recruitment is low; the range limit may be set by limited recruitment. Between June 2012 and March 2013, 25 sites from the middle of the species range (33°N) to Cape Arago were sampled and population size frequency distributions, densities, and nearest neighbor distances were compared to the amount of rocky and sandy shore and kelp bed size. North and south of 37°N, the densities of new recruits averaged 22 and 86 m?2, respectively. This shift was associated with the range limit of Macrocystis pyrifera kelp beds; we hypothesize that slower currents in M. pyrifera beds may limit larval dispersal leading to higher recruitment. North and south of 40°N, adult density averaged <1 and 458 m?2, respectively, with the species absent from many sites to the north. This shift was associated with a sharp drop in the amount of rocky shoreline and an increase in uninhabitable sandy shore. Near the northern range limit, >80 % of the individuals were solitary and may be unable to spawn successfully. Recruitment at Cape Arago was infrequent and likely due to self-recruitment. This study suggests that the range limit was set by the absence of M. pyrifera and too little rocky shore leading to high larval wastage, low settlement, low population densities, and, due to an Allee effect, very small effective population sizes.  相似文献   

3.
Seventeen immature green turtles Chelonia mydas were tracked concurrently by automated ultrasonic receivers at a coral reef off North-Eastern Australia (September–December 2010, 16.4°S, 145.6°E). The majority (n = 11) were tracked for the entire 100-day study, the remainder for 23–85 days. Detection data aggregated at 30-min intervals produced median 6.5–35 daily locations for individual turtles. Home range areas (95 % utilisation distribution) were ≤1 km2, $ {\bar{\text{x}}} $  ± SD = 0.74 km2 ± 0.159. To the best of our knowledge, these are the first home range estimates for C. mydas foraging at offshore tropical reefs. The findings are important for conservation in revealing near-continuous presence of the same individuals within a small geographic area. Time between detections was very short (median <3 min) demonstrating passive ultrasonic technology can track multiple turtles in a foraging environment with higher temporal resolution than typically achieved by satellite tracking.  相似文献   

4.
Both natural and human factors contributing to desertification were examined to understand the driving mechanisms of the desertification process in Zhalute Banner, Inner Mongolia of China. The coefficient of variation (CV) and climate departure index (Z) were calculated to examine the fluctuations and trends of interannual variations of temperature and precipitation; TM remote sensing data was extracted to obtain the sandy land area; linear regression analysis was used to analyze climate changes and the socio-economic evolution over the years, and it was also used to standardize the variables, which included annual temperature, annual precipitation, human population, and livestock number, in order to measure the difference in the rate of change between climate and anthropogenic factors. The results showed that there was a rise of about 1.6°C in temperature but no significant change in precipitation from 1961 to 2000, which indicated a short-term climatic trend toward aridity in this area, a condition necessary for desertification. The fraction of precipitation in spring tended to increase whilst the fraction in autumn and winter decreased. Both the human population and livestock population had tripled and the cultivated area had doubled from 1961 to 2000, suggesting that socio-economic factors might have contributed more significantly to the desertification. Between 1988 and 1997, the sandy land area increased by 12.5%, nearly 2.4 times in the farming section. It could be concluded that the driving mechanisms of the desertification processes in Zhalute banner are mainly the policy of cropland expansion and the rising populations of humans and their livestock, which has affected the land use pattern in the past decades.  相似文献   

5.
《Ecological modelling》1999,114(2-3):137-173
Two-dimensional, 31-segment, 61-channel hydrodynamic and water quality models of Lake Marion (surface area 330.7 km2; volume 1548.3×106 m3) were developed using the WASP5 modeling system. Field data from 1985 to 1990 were used to parameterize the models. Phytoplankton kinetic rates and constants were obtained from a related in situ study; others from modeling literature. The hydrodynamic model was calibrated to estimates of daily lake volume; the water quality model was calibrated for ammonia, nitrate, ortho-phosphate, dissolved oxygen, chlorophyll-a, biochemical oxygen demand, organic nitrogen, and organic phosphorus. Water quality calibration suggested the model characterized phytoplankton and nutrient dynamics quite well. The model was validated (Kolmogorov–Smirnov two-sample goodness-of-fit test at P<0.05) by reparameterizing the nutrient loading functions using an independent set of field data. The models identified several factors that may contribute to the spatial variability previously reported from other research in the reservoir, despite the superficial absence of complex structure. Sensitivity analysis of the phytoplankton kinetic rates suggest that study site-specific estimates were important for obtaining model fit to field data. Sediment sources of ammonia (10–60 mg m−2 day−1) and phosphate (1–6 mg m−2 day−1) were important to achieve model calibration, especially during periods of high temperatures and low dissolved oxygen. This sediment flux accounted for 78% (nitrogen) and 50% (phosphorus) of the annual load. Spatial and temporal variability in the lake, reflected in the calibrated and validated models, suggest that ecological factors that influence phytoplankton productivity and nutrient dynamics are different in various parts of the lake. The WASP5 model as implemented here does not fully accommodate the ecological variability in Lake Marion due to model constraints on the specification of rate constants. This level of spatial detail may not be appropriate for an operational reservoir model, but as a research tool the models are both versatile and useful.  相似文献   

6.
Predictions of short and long term changes in Sepia officinalis metabolism are useful, since this species is both economically important for aquaculture and also is an ideal experimental laboratory organism. In this study standard and routine oxygen consumption rates of newly hatched and juvenile laboratory raised cuttlefish S. officinalis ranging between 0.04 and 18.48 g dry body mass (Dm), were measured over a range of temperatures (10, 15, 20 and 25°C). The mass exponent (b) ranged between 0.706 and 0.992 for standard oxygen consumption and between 0.694 and 0.990 for routine oxygen consumption. Oxygen consumption scaled allometrically (b = 0.7) with body mass for cuttlefish <2 g Dm and isometrically (b = 1) thereafter. No significant differences were apparent amongst the slopes of oxygen consumption and body mass at different temperatures for standard and routine oxygen consumption. However, the intercepts differed significantly amongst the regression lines, indicating a significant effect of temperature on the magnitude of oxygen consumption. The combined effect of temperature (T) and dry body mass (Dm) are best described by the following equations: cuttlefish <2 g, MO2 = 0.116Dm0.7111.086 T and >2 g, MO2 = 0.076Dm0.9831.091 T for standard oxygen consumption; cuttlefish <2 g, MO2 = 0.538Dm0.7291.057 T and >2 g, MO2 = 0.225Dm0.9621.081 T for routine oxygen consumption. Using these equations it was estimated that a cuttlefish of 1 g Dm held at 20°C, eating 5% Dm day−1 and undergoing standard and routine metabolism consumes 21.3 and 35.4%, respectively of its total daily energy intake. Juvenile cuttlefish (3.32–5.08 g Dm) held at 15°C and deprived of food for 27 days maintained a stable standard oxygen consumption rate for the first 6 days following starvation. By the 18th day without food, oxygen consumption rate had declined by 53% and further declined to 65% below the standard oxygen consumption rate on the 27th day. Upon resumption of feeding, the respiration rate returned immediately to the initial level prior to food deprivation. The present study defines the basic energy requirements and general physiological state of young cuttlefish at temperatures of 10–25°C with and without food.  相似文献   

7.
The regional acid deposition model system (RegADMS) was applied to simulate the air sulfur deposition onto different landuse types over China, in which the dry deposition velocities of SO2 and sulfate aerosol (SO 4 2– ) were estimated by use of a big leaf resistance analogy model and the wet scavenging coefficients were parameterized in terms of precipitation rate. Investigations show that the annual total sulfur deposition over mainland China is 7.24 mt (1 mt = 106 ton) , in which dry deposition and wet deposition accounts for 56 and 44%, respectively. The sulfur deposition onto agriculture land, grass land, and forest land is 1.09, 3.6 and 1.41 mt, respectively, which sums 6.1 mt and accounts for 84% of the total sulfur deposition. The modeled sulfur deposition was in agreement with the measurement conducted at farmland in Yingtan, a typical read soil region in Jiangxi province of China, during the period of November 1998–October 1999. The total sulfur deposition at the Yingtan site is about 10.3 gm–2 year–1 of which 83% is dry deposition. The modeling sulfur deposition at the same site is 8.4 gm–2 year–1. Furthermore, the comparison between RegADMS and RAINS-ASIA on modeling regional sulfur deposition shows the consistence of the two models. The correlation coefficient between the simulated sulfur deposition at the medium-large cities reaches 0.72.  相似文献   

8.
We used satellite telemetry to study behavior at foraging sites of 40 adult female loggerhead sea turtles (Caretta caretta) from three Florida (USA) rookeries. Foraging sites were located in four countries (USA, Mexico, the Bahamas, and Cuba). We were able to determine home range for 32 of the loggerheads. One turtle moved through several temporary residence areas, but the rest had a primary residence area in which they spent all or most of their time (usually >11 months per year). Twenty-four had a primary residence area that was <500 km2 (mean = 191). Seven had a primary residence area that was ≥500 km2 (range = 573–1,907). Primary residence areas were mostly restricted to depths <100 m. Loggerheads appeared to favor areas with larger-grained sediment (gravel and rock) over areas with smaller-grained sediment (mud). Short-term departures from primary residence areas were either looping excursions, typically involving 1–2 weeks of continuous travel, or movement to a secondary residence area where turtles spent 25–45 days before returning to their primary residence area. Ten turtles had a secondary residence area, and six used it as an overwintering site. For those six turtles, the primary residence area was in shallow water (<17 m) in the northern half of the Gulf of Mexico (GOM), and overwintering sites were farther offshore or farther south. We documented long winter dive times (>4 h) for the first time in the GOM. Characterizing behaviors at foraging sites helps inform and assess loggerhead recovery efforts.  相似文献   

9.
Assuming that the landscape physiographic characteristics strongly determine the occurrence of land use and land cover types, this study assessed the distribution patterns of natural and converted classes in relation to the major geomorphological units and slope ranges in the central area of continuous savanna formations in Brazil (Cerrado biome), the country’s most important region for cattle ranching and intensive commodity crops. Our results showed that 93% of the agriculture activities are concentrated at slopes of less than 5°, mostly associated to old regional planation surfaces (RPSs). Considering the amount of remnant vegetation and the occupation and land use deterministic trends, we estimated that between 58,041 km2 and 79,677 km2 of conversions may occur in the near future. If the priority areas for biodiversity conservation are properly enforced and effectively incorporated into the system of fully protected areas and areas of sustainable use, a decrease of approximately 24% in the expected potential deforestation could be achieved.  相似文献   

10.
As antibiotic-resistant bacterial strains emerge and pose increased global health risks, new antibacterial agents are needed as alternatives to conventional antimicrobials. Naturally occurring antibacterial clays have been identified which are effective in killing antibiotic-resistant bacteria. This study examines a hydrothermally formed antibacterial clay deposit near Crater Lake, OR (USA). Our hypothesis is that antibacterial clays buffer pH and Eh conditions to dissolve unstable mineral phases containing transition metals (primarily Fe2+), while smectite interlayers serve as reservoirs for time release of bactericidal components. Model pathogens (Escherichia coli ATCC 25922 and Staphylococcus epidermidis ATCC 14990) were incubated with clays from different alteration zones of the hydrothermal deposit. In vitro antibacterial susceptibility testing showed that reduced mineral zones were bactericidal, while more oxidized zones had variable antibacterial effect. TEM images showed no indication of cell lysis. Cytoplasmic condensation and cell wall accumulations of <100 nm particles were seen within both bacterial populations. Electron energy loss analysis indicates precipitation of intracellular Fe3+-oxide nanoparticles (<10 nm) in E. coli after 24 h. Clay minerals and pyrite buffer aqueous solutions to pH 2.5–3.1, Eh > 630 mV and contain elevated level (mM) of soluble Fe (Fe2+ and Fe3+) and Al3+. Our interpretation is that rapid uptake of Fe2+ impairs bacterial metabolism by flooding the cell with excess Fe2+ and overwhelming iron storage proteins. As the intracellular Fe2+ oxidizes, it produces reactive oxygen species that damage biomolecules and precipitates Fe-oxides. The ability of antibacterial clays to buffer pH and Eh in chronic non-healing wounds to conditions of healthy skin appears key to their healing potential and viability as an alternative to conventional antibiotics.  相似文献   

11.
Atrazine is one of the most widely applied and persistent herbicides in the world. In view of limited information on the regional contamination of atrazine in soils in China, this study investigated the spatial distribution and environmental impacts of atrazine in agricultural soils collected from the Yangtze River Delta (YRD) as an illustrative analysis of rapidly developing regions in the country. The results showed that the concentrations of atrazine in the YRD agricultural soils ranged from <1.0 to 113 ng/g dry weight, with a mean of 5.7 ng/g, and a detection rate of 57.7 % in soils. Pesticide factory might be a major source for the elevated levels of atrazine in Zhejiang Province. The contamination of atrazine was closely associated with land use types. The concentrations and detection rates of atrazine were higher in corn fields and mulberry fields than in rice paddy fields. There was no significant difference in compositions of soil microbial phospholipids fatty acids among the areas with different atrazine levels. Positive relationship (R = 0.417, p < 0.05, n = 30) was observed between atrazine and total microbial biomass. However, other factors, such as soil type and land management practice, might have stronger influences on soil microbial communities. Human health risks via exposure to atrazine in soils were estimated according to the methods recommended by the US EPA. Atrazine by itself in all the soil samples imposed very low carcinogenic risks (<10?6) and minimal non-cancer risks (hazard index <1) to adults and children.  相似文献   

12.
We tracked the long-term movements of 70 parrotfishes, surgeonfishes and goatfishes captured inside a small (1.3 km2) marine protected area (MPA: Kealakekua Bay Marine Life Conservation District, Hawaii) by implanting them with small transmitters and deploying underwater monitoring devices inside the bay and along 100 km of the adjacent west Hawaii coastline. Individual fish were detected inside Kealakekua Bay for up to 612 days but many were detected for much shorter periods (median = 52 days). There were species-specific differences in the scale of movements and habitats used, but most fish utilized between 0.2 and 1.6 km of coastline, and individuals of each species showed some degree of diel habitat shift. A wide variety of reef fishes captured inside the MPA swam back and forth across an MPA boundary intersecting continuous reef (i.e., this boundary was porous to reef fish movements), but only 1 of 11 species tagged crossed a wide sandy channel inside Kealakekua Bay suggesting that this feature may function as a natural barrier to movements. Results indicate relatively small MPAs (<2 km of coastline) could provide effective, long-term protection for multi-species assemblages of reef fishes provided that boundaries are situated along major habitat breaks (e.g., large sand channels between reefs) that may serve as natural barriers to reef fish movements. It is crucial that a multi-species approach be used when assessing MPA effectiveness.  相似文献   

13.
Potential evapotranspiration (PET) is an important component of water cycle. For traditional models derived from the principle of aerodynamics and the surface energy balance, its calculation always includes many parameters, such as net radiation, water vapor pressure, air temperature and wind speed. We found that it can be acquired in an easier way in specific regions. In this study, a new PET model (PETP model) derived from two empirical models of soil respiration was evaluated using the Penman-Monteith equation as a standard method. The results indicate that the PETP model estimation concur with the Penman-Monteith equation in sites where annual precipitation ranges from 717.71 mm to 1727.37 mm (R2 = 0.68, p = 0.0002), but show large discrepancies in all sites (R2 = 0.07, p = 0.1280). Then we applied our PETP model at the global scale to the regions with precipitation higher than 700 mm using 2.5° CMAP data to obtain the annual PET for 2006. As expected, the spatial pattern is satisfactory overall, with the highest PET values distributed in the lower latitudes or coastal regions, and with an average of 1292.60 ± 540.15 mm year−1. This PETP model provides a convenient approach to estimate PET at regional scales.  相似文献   

14.
Wang  Qiugui  Sha  Zhanjiang  Wang  Jinlong  Du  Jinzhou  Hu  Jufang  Ma  Yujun 《Environmental geochemistry and health》2019,41(5):2093-2111
Environmental Geochemistry and Health - Sediment sequences in Lake Qinghai spanning the past 100&nbsp;years were explored to assess the effects of changes in local land desertification, dust...  相似文献   

15.
Regions of high primary production along the oligotrophic west coast of Australia between 34 and 22°S in May–June 2007 (midway through the annual phytoplankton bloom) were found around mesoscale features of the Leeuwin Current. At 31°S, an anticyclonic eddy-forming meander of the Leeuwin Current had a mixed layer depth of >160 m, a depth-integrated chlorophyll a (Chl a)-normalised primary production of 24 mg C mg Chl a ?1 day?1 compared to the surrounding values of <18 mg C mg Chl a ?1 day?1. In the north between 27 and 24°S, there were several stations in >1,000 m of water with a shallow (<100 m) and relatively thin layer of high nitrate below the mixed layer but within the euphotic zone. These stations had high primary production at depths of ~100 m (up to 7.5 mg C m?3 day?1) with very high rates of production per unit Chl a (up to 150 mg C mg Chl a ?1 day?1). At 27–24°S, the majority of the phytoplankton community was the ubiquitous tropical picoplankters, Synechococcus and Prochlorococcus. There was a decline in the dominance of the picoplankters and a shift towards a more diverse community with more diatoms, chlorophytes, prasinophytes and cryptophytes at stations with elevated production. Photosynthetic dinoflagellates were negligible, but heterotrophic dinoflagellate taxa were common. Haptophytes and pelagophytes were also common, but seemed to contribute little to the geographical variation in primary production. The mesoscale features in the Leeuwin Current may have enhanced horizontal exchange and vertical mixing, which introduced nitrate into the euphotic zone, increasing primary production and causing a shift in phytoplankton community composition in association with the annual winter bloom.  相似文献   

16.
《Ecological modelling》2003,167(3):213-220
The effect of cannibalism on an age-structured predator–prey system is studied. Three stable equilibrium states are found. Using a Hopf bifurcation analysis, it is found that the non washout steady state looses its stability as the cannibalism attack rate increases past a bifurcation point Sc. The dependence of the bifurcation point on the other parameters in the model is found. It is shown that the trajectory of the solution spirals in for attack rates S<Sc and exhibits limit cycle behavior for S>Sc.  相似文献   

17.
This article presents results concerning the local calibration of the transport parameters (longitudinal and transversal diffusions and decay coefficient) for a two-dimensional problem of water quality at Igapó I Lake, located in Londrina, Paraná, Brazil, using fecal coliforms as an indicator of water quality. The simulation of fecal coliforms concentrations all over the water body is conducted by means of a structured discretization of the geometry of Igapó I Lake, together with the finite difference and finite element methods. By using the velocity field, modeled by the Navier-Stokes and Poisson equations, the flow of fecal coliforms is described by means of a transport model, which considers advective and diffusive processes, as well as a process of fecal coliforms decay. In the checkpoint, the longitudinal and transversal diffusion coefficients and the coliforms decay coefficient that best fitted the value of the fecal coliforms concentration were Dx = Dy = 0.001 m2/h and k = 0.5 d−1 = 0.02083 h−1. A qualitative and quantitative analysis of the numerical simulations conducted in function of the diffusion coefficients and of the coliforms decay parameter provided a better understanding of the local water quality at Igapó I Lake.  相似文献   

18.
The ecological toxicity of cadmium (Cd, 10 mg kg−1 of dry weight soil) and butachlor (10, 50 and100 mg kg−1 of dry weight soil) in both their single and combined effects on soil urease and phosphatase was studied after 1, 3, 7, 14, 21 and 28 days exposure under controlled conditions in paddy and phaeozem soils. The results showed that Cd reduced the activities of urease and phosphatase at early incubation time (1–7 days), while the reduction almost disappeared at the end of the incubation. The effect of Cd on phosphatase was more pronounced than that on urease. The activities of urease and phosphatase were reduced by butachlor, while urease activity was significantly (P < 0.05 or P < 0.01) improved when the concentrations of butachlor were 10 and 50 mg kg−1 at the end of the incubation. When Cd (10 mg kg−1) was combined with butachlor (50 and 100 mg kg−1), the activities of urease and phosphatase became lower than without combination at early incubation time, which indicated that the toxicity of Cd significantly increased (P < 0.05 or P < 0.01). However, when Cd (10 mg kg−1) was combined with butachlor (10 mg kg−1), the activities of urease and phosphatase became higher than those without combination at the end of the incubation, which indicated that the toxicity of Cd decreased. It was indicated that the combined effects depended largely on the incubation time and the concentration ratio of Cd and butachlor. In addition, it was showed that the combined effects of butachlor and Cd appeared different in paddy from phaeozem, which may be related to the different properties of these soils.  相似文献   

19.
《Ecological modelling》2005,181(4):591-614
The development of carbon (C) and nitrogen (N) simulations is one of the ongoing efforts in the land surface schemes of climate models. The C- and N-coupled Canadian Land Surface Scheme (C-CLASS) was recently modified to better represent grassland ecosystems. Improvements include revised plant growth and senescence calculations that are driven by the plant C balance between fixation and respiration, and leaf-out and leaf-fall schemes that are regulated by the seasonal dynamics of C and N reserves. These revisions were developed to better simulate the stress-related senescence and regrowth of perennials. The model was tested with observations of surface carbon and energy fluxes, soil temperature and moisture, and plant growth during 3 years of declining precipitation at a northern semiarid grassland near Lethbridge, Alberta, Canada. The R2 and standard deviations between the simulated and observed half-hourly fluxes were 0.95 and 22.5 W m−2 for net radiation, 0.82 and 42.1 W m−2 for sensible heat, 0.66 and 29.2 W m−2 for latent heat, and 0.63 and 0.95 μmol C m−2 s−1 for net CO2 exchange. The model and observations both showed a strong impact of declining precipitation on annual carbon budgets in this semi-arid grassland. In a wet year (1998, precipitation = 482 mm), the ecosystem acted as a strong C sink (92 g C m−2 modelled and 109 g C m−2 measured from June 20th to December 31st). In a near-normal year (1999, precipitation = 341 mm), a smaller C sink was indicated (24 g C m−2 modelled and 21 g C m−2 measured). In a dry year (2000, precipitation = 276 mm), the ecosystem acted as a small C source (−18 g C m−2 modelled and −17 g C m−2 measured).  相似文献   

20.
Very shallow lagoons that are a few centimeters deep are common in the arid Andes of Northern Chile, Argentina, Bolivia and Perú. The dynamics of these lagoons are dominated by the water–sediment interface (WSI) and strong afternoon winds. Although many studies have examined the diffusional mass transfer coefficients (k t ) of open channel flows, estimates for wind-induced flows are still unknown. The aim of this article is to propose and validate an analytical expression for computing k t at the WSI for wind-induced flow. The laboratory measurements were conducted in a wind tunnel with a water tank of variable depth located at its downwind end. Natural muddy sediments were placed in the middle of the tank so that the dissolved oxygen (DO) was consumed in the sediments. The diffusional mass transfer coefficient that characterizes the DO uptake in the sediment was obtained from DO micro-profiles measured with an OX-25 Unisense microelectrode. Water velocity profiles were measured with a 2D side-view Sontek acoustic doppler velocimetry (ADV), and the wind shear velocity was computed based on wind velocity profiles that were measured with an Extech hot-wire anemometer. A total of 16 experiments were conducted with different water depths and wind shear stresses. The constants required by the model were determined from these experiments, and the analytical expression was successfully validated by the laboratory observations. The analytical expression obtained for computing k t was also validated with field observations that were conducted in October, 2012, in Salar del Huasco, Northern Chile (20.274° S, 68.883° W, 3800 m above sea level). The comparison between the observed and predicted values of k t provides a determination coefficient of r 2 = 0.48 and a p value < 0.01. The results show that the value of k t for wind-induced flow is proportional to the wind shear velocity and the inverse of the Reynolds number of the wind-induced current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号