首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhodamine B can be degraded using Prussian blue as a photo-Fenton like reagent under λ > 420 nm visible irradiation. Kinetic studies show ln(C o/C t ) is linearly proportional to the reaction time during the photo-degradation process; thus, the degradation reaction obeys a pseudo-first order kinetic law. It is very interesting that the presence of salinity such as 0.1 M KCl can speed up greatly the degradation rate: the time to achieve 90.0% degradation ratio is shortened from 120.0 to 40.0 min under comparable conditions, which is very useful in the treatment of wastewaters with high content of salinity.  相似文献   

2.
A study of the decolorization of reactive brilliant blue in an aqueous solution using Fe-Mn-sepiolite as a heterogeneous Fenton-like catalyst has been performed. The Fourier transform infrared (FTIR) spectra of the catalyst showed bending vibrations of the Fe-O. The X-ray diffraction (XRD) patterns of the catalyst showed characteristic diffraction peaks of α-Fe2O3, γ-Fe2O3 and MnO. A four factor central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables (catalyst addition, hydrogen peroxide dosage, initial pH value and initial dye concentration). When the reaction conditions were catalyst dosage= 0.4 g, [H2O2]= 0.3 mL, pH= 2.5, [reactive brilliant blue]o = 50 mg·L−1, and volume of solution= 500 mL at room temperature, the decolorization efficiency of reactive brilliant blue was 91.98% within 60 min. Moreover, the Fe-Mn-sepiolite catalyst had good stability for the degradation of reactive brilliant blue even after six cycles. Leaching of iron ions (<0.4 mg·L−1) was observed. The decoloring process was reactive brilliant blue specific via a redox reaction. The benzene ring and naphthalene ring were first oxidized to open ring; these were then oxidized to the alcohol and carboxylic acid. The reactive brilliant blue was decomposed mainly by the attack of ·OH radicals including surface-bound ·OH radicals generated on the catalyst surface.  相似文献   

3.
In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new applications of organobismuth compounds, cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f][1,5] azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using terminal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the maximum turnover frequency was up to 10740 h?1 at 120°C and 3 MPa CO2 pressure when tetrabutylammonium iodide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity, demonstrating a potential in industrial application.  相似文献   

4.
Effective wastewater treatment through conventional methods that rely on heavy aeration are expensive to install and operate. Duckweed is capable of recovering or extracting nutrients or pollutants and is an excellent candidate for bio-remediation of wastewaters. Such plants grow very fast, utilizing wastewater nutrients and also yield cost effective protein-rich biomass as a by-product. Duckweeds being tiny surface-floating plants are easy to harvest and have an appreciable amount of protein (15%–45% dry mass basis) and a lower fiber (7%–14% dry mass basis) content. Besides nutrient extraction, duckweeds has been found to reduce total suspended solids, biochemical oxygen demand (BOD), and chemical oxygen demand in wastewater significantly. Depending on the initial concentrations of nutrients, duckweed-covered systems can remove nitrate (NO3?) at daily rates of 120–590 mg NO3? m?2 (73%–97% of initial concentration) and phosphate (PO4?) at 14–74 mg PO4? m?2 (63%–99% of initial concentration). Removal efficiencies within 3 days of 96% and 99% have been reported for BOD and ammonia (NH3). Besides several genera of duckweeds (Spirodela, Lemna, Wolffia), other surface-floating aquatic plants like water hyacinth (Eichhornia) are well known for their phyto-remediation qualities.  相似文献   

5.
李善评  马相如  苏保龄  姜艳艳  许洁  郭亮 《环境化学》2012,31(10):1611-1618
为改善普通石墨电极的电催化性能,将以溶胶-凝胶法合成的钙钛矿氧化物LaNiO3混合其它原料做成气体扩散电极,用于电化学降解活性艳红X-3B,以脱色率来考核催化剂的氧还原活性.采用星点设计-效应面曲线法对催化剂制备工艺进行了优化,得出最佳工艺参数为:柠檬酸含量为金属离子物质的量的1.54倍,pH值为9.94,焙烧温度为824.39℃.采用X射线衍射(XRD)、动电位扫描等检测分析方法对所制备的催化剂进行表征和分析.结果表明,制备的催化剂晶相纯净、晶型完整、衍射峰强度较高,是较完整的钙钛矿结构;相比于普通石墨电极,掺杂催化剂的气体扩散电极极化阻力高,氧还原性能良好,有利于有机物的降解.  相似文献   

6.
ZnS-loaded TiO2 (ZnS–TiO2) was synthesized by a sol–gel method. The catalyst was characterized by using different techniques (XRD, HR-SEM, EDS, DRS, PL, XPS, and BET methods). The photocatalytic activity of ZnS–TiO2 was investigated for the degradation of Sunset Yellow FCF (SY) dye in an aqueous solution using ultraviolet light. ZnS–TiO2 is found to be more efficient than prepared TiO2, TiO2–P25, TiO2 (Merck), and ZnS at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration, and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by chemical oxygen demand measurements. The catalyst is found to be reusable.  相似文献   

7.
Hexahedron-like BiPO4 microcrystals were sucessfully synthesized via a template-free hydrothermal method. The resulting samples were characterized by Xray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The BiPO4 samples were of pure monoclinic phase, and the initial amount of PO3–4 during synthesis did not show obvious effect on the phase properties of the materials. The hexahedron-like BiPO4 microcrystal had explicitly cut edges, and its thickness was about 1 μm. The photocatalytic performance of the BiPO4 catalysts was evaluated by photodegradation of RhB under UV light irradiation with commerial Degussa P25 TiO2 as reference. Compared with P25, the BiPO4 catalysts displayed higher photocatalytic activity, with 98.7% of RhB degraded during 60-min experiment. Cost evaluation analysis was adopted to describe the energy consumption of the degradation process, and the results suggested the potential application of this material in the field of dye-contaminated wastewater treatment or environmental matrices remediation.  相似文献   

8.
为了有效去除废水中的有机污染物和实现赤泥(RM)的再利用,利用废弃活性炭(WAC)作为碳源,通过还原焙烧-磁选二步法制备了赤泥基零价铁(ZVI/RM)材料作为类芬顿催化剂催化氧化废水中常见的有机污染物罗丹明B (RhB)和磺胺嘧啶(SD).材料表征结果表明,零价铁均匀分布在材料上,且材料具有明显的介孔结构.当初始pH为...  相似文献   

9.
Coastal areas are among the most highly populated, most exploited areas and vulnerable ecosystems in the world. How these interface areas between terrestrial and marine environments can effectively planned and managed has proved to be extremely challenging. Integrated Coastal Zone Management (ICZM) has been promoted as a potential panacea for the effective planning and management of these areas. However achieving such goals for ICZM is complex because of the many human activities and diverse regulatory regimes in coastal areas requires effective integration along many dimensions. Within the context of the developing world, which is often characterised by highly centralised governance systems combined with a lack of effective public and stakeholder participation in planning delivering an effective ICZM, which is drawn from collaborative planning ideas has proved particularly problematic. Furthermore within these countries there have been few critical and analytical evaluations of why ICZM experiments have failed. This paper seeks to begin to address this gap by suggesting that Actor Network Theory (ANT) is an appropriate analytical framework to critically evaluate why ICZM initiatives in Egypt, at both the national and local level, have been relatively unsuccessful. The critical evaluation leads to some practical recommendations that could help to enhance the implementation of ICZM in Egypt.  相似文献   

10.
We designed photoelectrochemical cells to achieve efficient oxidation of rhodamine B (RhB) without the need for photocatalyst or supporting electrolyte. RhB, the metal anode/cathode, and O2 formed an energy-relay structure, enabling the efficient formation of O 2 species under ultraviolet illumination. In a single-compartment cell (S cell) containing a titanium (Ti) anode, Ti cathode, and 10 mg·mL–1 RhB in water, the zero-order rate constant of the photoelectrochemical oxidation (kPEC) of RhB was 0.049 mg·L–1·min–1, while those of the photochemical and electrochemical oxidations of RhB were nearly zero. kPEC remained almost the same when 0.5 mol·L–1 Na2SO4 was included in the reactive solution, regardless of the increase in the photocurrent of the S cell. The kPEC of the illuminated anode compartment in the two-compartment cell, including a Ti anode, Ti cathode, and 10 mg·mL–1 RhB in water, was higher than that of the S cell. These results support a simple, eco-friendly, and energysaving method to realize the efficient degradation of RhB.
  相似文献   

11.
Alginate encapsulated nano-hydroxyapatite beads were synthesized and characterized by Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface analysis, and X-ray diffraction. Their adsorptive potential for Ni2+ and rhodamine B was explored in batch mode and by fixed-bed column passage. In the batch system, maximum uptake capacity for Ni2+ was 360 mg g?1 and 480 mg g?1 for rhodamine B. In the presence of humic acid, sorption was enhanced. For the continuous-flow system, adsorption was effective at low flow rate. For both pollutants, mass transport resistance increased during adsorption. The overall rates of rhodamine B and Ni2+ uptake were found to be controlled by external mass transfer.  相似文献   

12.
Environmental Chemistry Letters - Efficient materials for energy storage, in particular for supercapacitors and batteries, are urgently needed in the context of the rapid development of...  相似文献   

13.
The synthesis of silver doped nano-particulate titanium dioxide (Ag/TiO2) using a microemulsion method and an investigation of its photocatalytic activity for the degradation of Acid Red 27 in distilled water under UV-irradiation is reported. The prepared Ag/TiO2 is characterized using transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The size of the Ag nanoparticles is around 5–15?nm, with almost uniform distribution on the TiO2 particles. The efficiency of the photocatalytic process is evaluated to establish the optimum conditions, found to be at 2?wt% of Ag loading on TiO2, catalyst dosage of 400?mg?L?1, and calcination temperature of 300°C. Complete decolorization of the dye solution on Ag/TiO2 was observed in 20?min of UV irradiation in the optimum conditions.  相似文献   

14.
Wool dyeing wastewater contains xenobiotic compounds that can be removed by biotechnological processes. Studies on various dyes showed that anaerobic processes are suitable to alter azo dyes as a first step of the biodegradation process. These compounds are reduced by anaerobic consortia to aromatic amines and its ultimate degradation can be achieved by a further aerobic treatment.

Studies on degradation rate of an wool acid dye were performed in batch systems inoculated with anaerobic biomass. A commercial diazo dye, Acid Red 73, was added to the synthetic medium in which glucose was used as sole carbon source.

Results indicated that the Acid Red 73 was partially degraded by a mixed culture of anaerobic bacteria and a decolorization of 90% was obtained. Kinetics studies on removal of the colour showed that the decolorization rate was several times faster than the degradation rate of glucose for a range of dye concentrations between 60 mg/L and 400 mg/L. A first order kinetic model was used for dye concentrations up to 200 mg/L. For higher concentrations a model similar to the Michaelis‐Menten equation was better fitted to the experimental data.  相似文献   

15.
Water chestnut peel, an agricultural bio-waste, was used as a biosorbent for removal of rhodamine B (RhB), basic textile dye, from an aqueous solution. The effects of various experimental parameters were studied. The equilibrium data correlated well with a Freundlich isotherm (R2 = 0.98–0.99) followed by a Halsey isotherm model (R2 = 0.98–0.99) which indicated heterogeneity of the adsorbent surface and multilayer adsorption of RhB dye onto the water chestnut peel waste (WCPW). High correlation coefficients (R2 = 0.99) together with close agreement between experimental qe (0.4–1.7 mg g?1) and calculated qe (0.4–2.5 mg g?1) suggested that the adsorption process followed pseudo-second-order kinetics, with k2 values in the range of 52–3.4 × 10?1 g mg?1 min?1 at different concentrations. The overall mechanism of adsorption was controlled by both liquid-film and intra-particle diffusions. The negative values of change in Gibb's free energy (?ΔG0 = 19.2–29.2 kJ mol?1) and positive values of change in enthalpy (ΔH0 = 30.9–117.6 kJ mol?1) revealed the process to be spontaneous and endothermic. WCPW was found to be an effective adsorbent for removal of RhB, a cationic dye, from an aqueous solution.  相似文献   

16.
17.
● MnO x /Ti flow-through anode was coupled with the biofilm-attached cathode in ECBR. ● ECBR was able to enhance the azo dye removal and reduce the energy consumption. ● MnIV=O generated on the electrified MnO x /Ti anode catalyzed the azo dye oxidation. ● Aerobic heterotrophic bacteria on the cathode degraded azo dye intermediate products. ● Biodegradation of intermediate products was stimulated under the electric field. Dyeing wastewater treatment remains a challenge. Although effective, the in-series process using electrochemical oxidation as the pre- or post-treatment of biodegradation is long. This study proposes a compact dual-chamber electrocatalytic biofilm reactor (ECBR) to complete azo dye decolorization and mineralization in a single unit via anodic oxidation on a MnOx/Ti flow-through anode followed by cathodic biodegradation on carbon felts. Compared with the electrocatalytic reactor with a stainless-steel cathode (ECR-SS) and the biofilm reactor (BR), the ECBR increased the chemical oxygen demand (COD) removal efficiency by 24 % and 31 % (600 mg/L Acid Orange 7 as the feed, current of 6 mA), respectively. The COD removal efficiency of the ECBR was even higher than the sum of those of ECR-SS and BR. The ECBR also reduced the energy consumption (3.07 kWh/kg COD) by approximately half compared with ECR-SS. The advantages of the ECBR in azo dye removal were attributed to the synergistic effect of the MnOx/Ti flow-through anode and cathodic biofilms. Catalyzed by MnIV=O generated on the MnOx/Ti anode under a low applied current, azo dyes were oxidized and decolored. The intermediate products with improved biodegradability were further mineralized by the cathodic aerobic heterotrophic bacteria (non-electrochemically active) under the stimulation of the applied current. Taking advantage of the mutual interactions among the electricity, anode, and bacteria, this study provides a novel and compact process for the effective and energy-efficient treatment of azo dye wastewater.  相似文献   

18.
In this work, a series of novel proton-gradient-transfer acid complexes (PGTACs) were developed. Their physicochemical properties, including thermal stability, melting point, and Hammett acidity, were measured. The effects of catalyst loading, reaction temperature, and substrate expansion on the catalytic performance were systematically studied. It is found that the combination of bidentate N-heterocycle and H2SO4 (1:2 M ratio) could form simultaneously N–H covalent bond and N…H hydrogen bond, which makes the PGTACs excellent catalysts integrate the advantages of strong acids (high catalytic activity) and ionic liquids (phase separation) in the esterification reaction. Moreover, these PGTACs can be reused by convenient phase separation without obvious diminution of catalytic activity. It is concluded that these PGTACs are potential alternative candidates for esterification reaction in the process of industrial catalysis.  相似文献   

19.
Yang  Yinchuan  Zhu  Qinlin  Peng  Xuwen  Sun  Jingjing  Li  Cong  Zhang  Xinmiao  Zhang  Hao  Chen  Jiabin  Zhou  Xuefei  Zeng  Hongbo  Zhang  Yalei 《Environmental Chemistry Letters》2022,20(4):2665-2685
Environmental Chemistry Letters - Water pollution is a major environmental issue with the rapid development of industry. Therefore, advanced technologies and materials are needed to remove...  相似文献   

20.
How should managers choose among conservation options when resources are scarce and there is uncertainty regarding the effectiveness of actions? Well‐developed tools exist for prioritizing areas for one‐time and binary actions (e.g., protect vs. not protect), but methods for prioritizing incremental or ongoing actions (such as habitat creation and maintenance) remain uncommon. We devised an approach that combines metapopulation viability and cost‐effectiveness analyses to select among alternative conservation actions while accounting for uncertainty. In our study, cost‐effectiveness is the ratio between the benefit of an action and its economic cost, where benefit is the change in metapopulation viability. We applied the approach to the case of the endangered growling grass frog (Litoria raniformis), which is threatened by urban development. We extended a Bayesian model to predict metapopulation viability under 9 urbanization and management scenarios and incorporated the full probability distribution of possible outcomes for each scenario into the cost‐effectiveness analysis. This allowed us to discern between cost‐effective alternatives that were robust to uncertainty and those with a relatively high risk of failure. We found a relatively high risk of extinction following urbanization if the only action was reservation of core habitat; habitat creation actions performed better than enhancement actions; and cost‐effectiveness ranking changed depending on the consideration of uncertainty. Our results suggest that creation and maintenance of wetlands dedicated to L. raniformis is the only cost‐effective action likely to result in a sufficiently low risk of extinction. To our knowledge we are the first study to use Bayesian metapopulation viability analysis to explicitly incorporate parametric and demographic uncertainty into a cost‐effective evaluation of conservation actions. The approach offers guidance to decision makers aiming to achieve cost‐effective conservation under uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号