首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
粉煤灰综合利用研究进展   总被引:6,自引:0,他引:6  
介绍了粉煤灰的物理化学性质。综述了粉煤灰在建材制造、建筑工程、道路工程、农业、废水处理和催化反应中的应用现状以厦未来的应用前景。  相似文献   

2.
粉煤灰是电力行业排放的主要固体废弃物,对其的资源化利用已成为环保的首要任务。对粉煤灰进行高附加值的资源化回收利用,是实现可持续发展的必经之路。介绍了大唐国际成功开发研制的从高铝粉煤灰中提取氧化铝技术,开辟了粉煤灰综合利用的新途径。  相似文献   

3.
随着我国经济快速发展及城市化水平提升,城市生活垃圾产量越来越大,焚烧逐渐成为城市生活垃圾处理的主要方式.但焚烧会产生大量的垃圾焚烧飞灰(以下简称飞灰),飞灰属于危险废物.论述了飞灰的来源、成分、特性及危害,介绍了飞灰的处理处置技术:水泥固化技术、化学药剂稳定化技术、熔融固化技术、水热稳定化技术和水泥窑协同处理技术,并分...  相似文献   

4.
Reject fly ash (rFA) represents a significant portion of the fly ashes produced from coal-fired power plants. Due to the high carbon content and large particle mean diameter, rFA is not utilized in the construction sector (for example, as supplementary cementing material) and is currently dumped into landfills, thus representing an additional environmental burden. Recently, the feasibility of using rFA in a relatively small number of applications, like solidification/stabilization of other wastes, has been investigated by different researchers. However, as the overall amount of fly ash utilized in such applications is still limited, there is a need to investigate other possibilities for rFA utilization starting from a deeper understanding of its properties. In the work presented herein, mechanical and hydration properties of cementitious materials prepared by blending the coarse fraction of a lignite high-calcium fly ash with ordinary cement were monitored and compared with the respective ones of a good quality fly ash-cement mixture. The results of this work reveal that a relatively cheap, bilateral classification-grinding method is able to promote the pozzolanic behavior of the rFAs, so that the overall performances of rFA containing cements are drastically improved. The evaluation of these results supports the belief that appropriate utilization of non-standardized materials may lead to new environmental-friendly products of superior quality.  相似文献   

5.
In the future, more electricity in the Netherlands will be produced using coal with co-combustion. Due to this, the generated annual ash volume will increase and the chemical composition will be influenced. One of the options for utilization if present markets are saturated and for use of fly ashes with different compositions, is as raw material for lightweight aggregates. This was selected as one of the best utilizations options regarding potential ash volume to be applied, environmental aspects and status of technology. Because of this, a study has been performed to assess the potential utilization of fly ash for the production of lightweight aggregate. Lightweight aggregate has been produced in a laboratory scale rotary kiln. The raw material consisted of class F fly ash with high free lime content. An addition of 8% clay was necessary to get green pellets with sufficient green strength. The basic properties of the produced lightweight aggregate and its behaviour in concrete have been investigated. The concrete has a good compressive strength and its leaching behaviour meets the most stringent requirements of Dutch environmental regulations. The carbon foot print of concrete will be negatively influenced if only the concrete itself is taken into account, but the reduction of the volume weight has advantages regarding design, transport emissions and isolation properties which may counteract this. In the Dutch situation the operational costs are higher than expected potential selling price for the LWA, which implies that the gate fee for the fly ash is negative.  相似文献   

6.
以粉煤灰为原料,采用改进的水热合成法制备了粉煤灰沸石,并将粉煤灰和粉煤灰沸石用于高浓度氨氮的吸附去除。实验结果表明:在粉煤灰和粉煤灰沸石的投加量分别为0.10 g/m L和0.04 g/m L、反应体系p H为5~7、初始氨氮质量浓度为500 mg/L的条件下,分别吸附660 min和60 min,粉煤灰和粉煤灰沸石对氨氮的去除率分别约为20.1%和50.7%左右,粉煤灰沸石对高浓度氨氮的去除效果明显优于粉煤灰;粉煤灰和粉煤灰沸石对氨氮的吸附动力学行为符合准二级动力学方程;Langmuir和Freundlich等温吸附模型能较好地描述粉煤灰对氨氮的等温吸附过程,而粉煤灰沸石对氨氮的等温吸附过程则更适宜用线性模型和Freundlich模型描述。  相似文献   

7.
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.  相似文献   

8.
The leaching behavior of dioxins from landfill containing bottom ash and fly ash from municipal solid waste incineration has been investigated by leaching tests with pure water, non-ionic surfactant solutions, ethanol solutions, or acetic acid solutions as elution solvents for a large-scale cylindrical column packed with ash. Larger amounts of dioxins were eluted from both bottom ash and fly ash with ethanol solution and acetic acid solution than with pure water. Large quantities of dioxins were leached from fly ash but not bottom ash by non-ionic surfactant solutions. The patterns of distribution of the dioxin congeners in the leachates were very similar to those in the bottom ash or fly ash from which they were derived.  相似文献   

9.
分别采用沸水浸泡、酸浸、碱浸和加热的方法对粉煤灰进行改性处理,利用FTIR仪和XRD仪对改性粉煤灰的成分和官能团进行了分析,并利用改性粉煤灰对模拟刚果红废水进行脱色。实验结果表明:碱改性粉煤灰中含有大量官能团,以及NaPl型沸石类物质,能够明显提高粉煤灰对刚果红的吸附性能;与活性炭相比,碱改性粉煤灰具有更高的性价比;在初始刚果红质量浓度为20mg/L、碱改性粉煤灰加入量为50g/L的条件下,废水的脱色率可达87.52%;碱改性粉煤灰对刚果红的吸附过程遵循二级反应动力学,较好地符合Langmuir等温式和Freundlich等温式。  相似文献   

10.
In this study, municipal solid waste incineration (MSWI) fly ash was used as a blending in making ceramic brick based on its characterization and an orthogonal test was performed to determine the optimal mixture ratio of the materials. Besides, the fired bricks made in accordance with the optimal mixture ratio were characterized for performance, phase transformation, microstructure, leaching toxicity of the heavy metals in accordance with GB/T 2542-92 (Detection methods for bricks analysis, China) and by means of XRD, SEM and leaching toxicity analysis. It was found that the optimal mixture ratio of materials (MSWI fly ash:red ceramic clay:feldspar:gang sand) was 20:60:10:10 by mass, and the optimal sintering temperature was 950 °C. Leaching results of heavy metals from sintered bricks were reduced considerably in comparison with those from green bricks prior to sintering process. The results as a whole suggested that utilization of MSWI fly ash in ceramic brick constituted a potential means of adding value.  相似文献   

11.
The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.  相似文献   

12.
A five-stage sequential extraction procedure was used to determine the distribution of 11 metals (Cd, Cr, Cu, Mo, Pb, Zn, As, Co, V, Ni, Ba), and sulphur (S) in bottom ash and in fly ash from a fluidized bed co-combustion (i.e. wood and peat) boiler of Stora Enso Oyj Oulu Mill at Oulu, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O); (2) exchangeable fraction (CH3COOH); (3) easily reduced fraction (NH2OH-HCl); (4) oxidizable fraction (H2O2 + CH3COONH4); and (5) residual fraction (HF + HNO3 + HCl). Although metals were extractable in all fractions, the highest concentrations of most of the metals occurred in the residual fraction. From the environmental point of view, this fraction is the non-mobile fraction and is potentially the least harmful. The Ca concentrations of 29.3 g kg(-1) (dry weight) in bottom ash and of 68.5 g kg(-1) (dry weight) in fly ash were correspondingly approximately 18 and 43 times higher than the average value of 1.6 g kg(-1) (dry weight) in arable land in Central Finland. The ashes were strongly alkaline pH (approximately 12) and had a liming effects of 9.3% (bottom ash) and 13% (fly ash) expressed as Ca equivalents (dry weight). The elevated Ca concentrations indicate that the ashes are potential agents for soil remediation and for improving soil fertility. The pH and liming effect values indicate that the ashes also have a pH buffering capacity. From the environmental point of view, it is notable that the heavy metal concentrations in both types of ash were lower than the Finnish criteria for ash utilization.  相似文献   

13.
China has ranked first in the coal fly ash emission in the world. The multipurpose use of the fly ash from power plant waste is always an important topic for the Chinese environmental protection, which has drawn the concern of the government, scientific research departments, manufacturing enterprises and industry experts. This paper introduces an experimental research on how to recycle fly ash effectively, a kind of new technology of making bricks by which fly ash content could be amounted to 50–80 %. The article introduces raw materials of fly ash brick, production process and key control points. It introduces how to change the technical parameters of the existing brick-making mechanical device, optimize the parameters combination and improve the device performance. High-content fly ash bricks are manufactured, which selects wet fly ash from power plants, adding aggregate with reasonable ratio and additives with reasonable dosage, and do the experimental research on manufactured products for properties, production technology and selection about technology parameters of production equipment. All indexes of strength grade, freezing-thawing resisting, and other standards of the studied bricks reached the national standards for building materials industry.  相似文献   

14.
In previous studies, we focused on a mechanochemical process for recycling fly ash for use in cement; this process was expected to immobilize heavy metals in the fly ash, a desirable outcome in light of the fact that recycled fly ash is commonly used in the synthesis of inorganic materials. Here, we investigated the leaching of lead (Pb) from fly ash treated by a mechanochemical process and from cement prepared from the treated fly ash. We used lead oxide (PbO), a typical Pb compound in fly ash, as a model substance. Mechanochemical treatment of the fly ash inhibited Pb leaching by 93%, and further inhibition (more than 99.9%) was observed in cement produced from the treated fly ash. During the mechanochemical treatment, PbO was reduced to Pb by iron from the stainless-steel mill used for processing, and the lower solubility of Pb in water resulted in immobilization of the Pb.  相似文献   

15.
罗洁  张海军  刘璟  杨剑  黄胜  邓仕明 《化工环保》2015,35(2):192-198
将粉煤灰进行碱激发改性,运用XRD和SEM技术对碱激发粉煤灰进行了表征,通过静态平衡吸附实验研究了碱激发粉煤灰对Cs+的吸附动力学和热力学特性,并对吸附前后的碱激发粉煤灰进行了FTIR分析。表征结果显示,碱激发处理后,粉煤灰的晶相发生了改变,且粉煤灰表面密实的硬壳层被破坏。实验结果表明:在初始Cs+质量浓度为200 mg/L、吸附温度为25℃、溶液pH为10、碱激发粉煤灰投加量为12.0 g/L的条件下,碱激发粉煤灰对Cs+的平衡吸附率可达80%以上,其吸附能力比碱激发前提高了3倍以上;吸附过程可用准二阶动力学方程来描述,并较好地符合Langmuir等温吸附模型;碱激发粉煤灰对Cs+的吸附是吸热过程,且能自发进行;该过程以物理吸附为主,并伴随化学吸附。  相似文献   

16.
By 2004, there were 19 municipal solid waste incinerators (MSWI) with a total yearly treatment capacity of 7.72 million tons in service in Taiwan. All 19 incinerators operated daily to generate about 1.05 million tons of incinerator ash, including bottom ash and stabilized fly ash in 2003, and the average ash yield is 18.67%. The total number of incinerators is expected to increase to 27, serving almost all cities in Taiwan by 2007. The authors have suggested a set of criteria based on the yield of incinerator ash (Phi) to study the ash recycle and reuse potential. The Taiwan Environmental Protection Administration has studied the treatment and reuse of MSWI ashes for many years and collected references on international experience accumulated by developed nations for establishing policies on treatment and reuse of MSWI ashes. These citations were analyzed as the basis for current governmental decision making on policies and factors to be considered for establishing policies on recycle and reuse of MSWI ashes. Feasible applications include utilization of ashes, which after sieving and separation of metal particles, produce granular materials. When granular materials comply with TCLP limitations, they can be utilized as cement additives or road base. The procedures of evaluation have been proposed in the performance criteria to be included in the proposed decision-making process of ash utilization.  相似文献   

17.
采用加压酸浸法提取粉煤灰中的A12O3和Fe2O3.实验研究了粉煤灰粒径、硫酸质量分数、反应时间、反应温度对粉煤灰中Al2O3和Fe2O3浸取率的影响,并通过SEM对粉煤灰酸浸前后的形貌进行了分析.实验结果表明,当粉煤灰粒径为75μm、硫酸质量分数为50%、反应温度为180℃、反应时间为4h时,粉煤灰中的Al2O3浸取率可达82.4%,Fe2O3浸取率为76.1%,经酸浸后粉煤灰的剩余率为72.4%.  相似文献   

18.
In this study, we propose a "washing-calcination-conversion of washed fly ash into cement material with bottom ash" (WCCB) system to reduce the amount of fly ash that must be specially treated so it can be used as raw cement material. Calcium hydroxide (Ca(OH)2) is widely used in air-pollution control devices of incinerators while sodium bicarbonate (NaHCO3) is not. We conducted single-, double-, and triple-washing experiments to compare the washing characteristics of two types of fly ash. Unlike NaHCO3 fly ash, Ca(OH)2 fly ash has almost twice as much washed residue and almost 2.5 times more chlorine after the same washing procedure. After washing once, the washing frequency is also important for NaHCO3 fly ash, while the mixing time and liquid/solid ratio are more critical for Ca(OH)2 fly ash. The use of NaHCO3 is more suitable for the WCCB system.  相似文献   

19.
Application of MSWI fly ash on acid soil and its effect on the environment   总被引:1,自引:0,他引:1  
This study evaluated the feasibility of using municipal solid waste incinerator (MSWI) fly ash as acid soil amendment. In particular, changes in soil physicochemical properties and the potential environmental problems caused by the application of MSWI fly ash were investigated. The results showed that application of MSWI fly ash to the acid soil could raise the soil pH. The contents of rapidly available P and K, and slowly available K in the amended soil had a linear relationship with the addition ratio of MSWI fly ash. An addition of less than 20% of MSWI could raise the soil respiratory intensity after incubation for 3-5 days. Application of MSWI fly ash to the soil increased its content of water soluble salts and heavy metals, which could cause phytotoxicity in the plants. Therefore, the addition of MSWI fly ash to the soil should not be excessive, and less than 5-10% is an advisable addition level depending on the acidity of the soil and the plants growing on it.  相似文献   

20.
探索催化双氧水氧化去除间甲酚对开发炼油厂碱渣废水处理新技术意义重大。采用钛硅分子筛催化双氧水氧化水中间甲酚,考察了反应时间、反应温度、双氧水加入量、催化剂加入量和初始溶液pH对间甲酚去除率的影响。实验结果表明:钛硅分子筛对双氧水氧化间甲酚具有显著的催化作用;在反应时间为90 min、反应温度为80 ℃、n(H2O2)∶n(间甲酚)为4、催化剂加入量为1.5 g/L、初始溶液pH为1.0~11.0的条件下,间甲酚去除率约为94%,间甲酚溶液的BOD5/COD从氧化前的0.26提高到氧化后的0.38,可生化性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号