首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Biowastes are becoming potential feedstocks for direct utilization or conversion to solid, liquid and gaseous fuels via various thermochemical routes. In this regard, jute dust which is a major agro-industrial waste in jute mills was pyrolysed in a fixed-bed reactor with an aim to study the product distribution and their characterization and to identify the optimum condition for bio-oil yield. The investigated process variables were temperature (400–700 °C), heating rate (10 and 40 °C/min) and nitrogen gas flow rate (50–250 ml/min). The yield of bio-oil is found to be maximum at 500 °C with a heating rate of 40 °C/min. However, further increase in temperature leads to decrease in bio-oil yield. Chemical compositions of the bio-oils were investigated using chromatographic and spectroscopic techniques such as 1H NMR, FTIR and GC–MS. The heating value of the bio-oil is 26.71 MJ/kg. The study shows that jute dust have potential for conversion to bio-oil through the process of pyrolysis to supplement the petro-derived liquid fuel for heating and transportation applications after upgrading. The biochar produced as a co-product of jute dust pyrolysis can be a potential soil amendment with multiple benefits including increased soil fertility and C-sequestration.  相似文献   

2.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   

3.
Due to the abundant supply and suitable physicochemical characteristics of livestock manure, it may be a useful biomass to produce biofuels, such as “bio-oil.” Hydrothermal liquefaction is a promising method for converting such wet biomasses into a liquid fuels and has attracted attention worldwide. In this review, the current state of research on the hydrothermal liquefaction of livestock manure biomasses is summarized. The effect of operating parameters on the yield of bio-oil is also reviewed. The fundamental characteristics of raw manure biomasses and converted oils are outlined and discussed in the paper. To reduce the use of fossil fuel and nuclear energy, the South Korean government has pledged to increase renewable energy. Based on findings from a literature review, it can be concluded that there is a chance for Korea to advance bio-oil production from the abundant and tremendous energy potential of swine manure by a hydrothermal liquefaction process.  相似文献   

4.
Effect of pressure on the hydropyrolysis of Jatropha seed deoiled cake   总被引:1,自引:1,他引:0  
The necessity to move towards a sustainable economy is increasing day by day owing to various problems like climate change, increasing crude oil prices, etc. In this line, hydropyrolysis of Jatropha seed deoiled cake has been carried out at various pressures of hydrogen (1, 20, 40 and 52 bar) at 450 °C. With an increase in pressure under the experimental conditions of present study from 1 to 40 bar, the yield of bio-oil is found to have increased and beyond 40 bar the bio-oil yields have decreased. It has been observed that the liquid bio-oil yield is highest at 17 wt% at 40 bar. The FTIR spectrum of the bio-oil and char at 40 bar shows maximum functionality, indicating the clear opening of the macromolecular structure. The EDAX analysis of the hydropyrolysis char obtained at 40 bar pressure show a maximum of 85 wt% carbon and minimum of oxygen 13 wt%.  相似文献   

5.
Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.  相似文献   

6.
The catalytic upgrading pyrolysis of pine sawdust was performed at 500 °C with various metal oxides to improve the quality of the bio-oil. The aim of this study was to investigate the potential of the metal oxides instead of traditional zeolites for catalytic upgrading pyrolysis with the analysis of Gas Chromatograph/Mass Spectrometer. In this study, the used catalysts were Calcium-oxide, Magnesium oxide, Titanium dioxide, and Zeolite (Si/Al?=?80). The influence of catalysts on products yields and compositions were investigated. Most metal oxides can enhance the bio-gas with the bio-oil yields decreased. The metal oxides led to a decrease of Acids, Aldehydes, Ketones and an increase of Furfural, Cresols, Catechols in Furans and Phenolics. Among the catalysts, the MgO catalysts was the most effective to convert the high molecular into lights ones (6.65% Cresols) with yield of 20.48% for Furfural. The deoxygenation reaction in bio-oil was suggested to convert oxygenated compounds into the low molecular weight of the materials (6.39% Guaiacols). Thus, the used metal oxides can improve the quality of bio-oil by decreasing undesirable compounds as well as increasing the desirable compounds with low oxygen contents via deoxygenation reaction.  相似文献   

7.
Journal of Material Cycles and Waste Management - The present work produced bio-oil from the pyrolysis of sludge from the biodiesel processing industry in a fixed bed reactor, aiming at industrial...  相似文献   

8.
Environment-friendly treatment of sewage sludge has become tremendously important. Conversion of sewage sludge into energy products by environment-friendly conversion process, with its energy recovery and environmental benefits, is being paid significant attention. Direct liquefaction of sewage sludge into bio-oils with supercritical water (SCW) was therefore put forward in this study, as de-water usually requiring intensive energy input is not necessary in this direct liquefaction. Supercritical water may act as a strong solvent and also a reactant, as well as catalyst promoting reaction process. Experiments were carried out in a self designed high-pressure reaction system with varying operating conditions. Through orthogonal experiments, it was found that temperature and residence time dominated on bio-oil yield compared with other operating parameters. Temperature from 350 to 500 °C and reaction residence time of 0, 30, 60 min were accordingly investigated in details, respectively. Under supercritical conversion, the maximum bio-oil yield could achieve 39.73%, which was performed at 375 °C and 0 min reaction residence time. Meanwhile, function of supercritical water was concluded. Fuel property analysis showed the potential of bio-oil application as crude fuel.  相似文献   

9.
Pyrolysis of forestry waste has been carried out in an auger reactor to study the influence of operational variables on the reactor performance and the properties of the related products. Pine woodchips were used for the first time as raw material and fed continuously into the reactor. Ten experiments were carried out under inert atmosphere at: (i) different reaction temperature (1073, 973, 873, 823 and 773 K); (ii) different solid residence time (5, 3, 2 and 1.5 min); and (iii) different biomass flow rate (3.9, 4.8 and 6.9 kg/h). Results show that the greatest yields for liquid production (59%) and optimum product characterisation were obtained at the lowest temperature studied (773 K) and applying solid residence times longer than 2 min. Regarding bio-oil properties, GC/MS qualitative identification show that the most abundant compounds are volatile polar compounds, phenols and benzenediols; and very few differences can be observed among the samples regardless of the pyrolysis operating conditions. On the whole, experimental results demonstrate that complete reaction of forest woodchips can be achieved in an auger reactor in most of the experimental conditions tested. Moreover, this study presents the initial steps for the future scaling up of the auger reactor with the aim of converting it into a mobile plant which will be able to remotely process biomass such as energy crops, forestry and agricultural wastes to obtain bio-oil that, in turn, can be used as energy vector to avoid high transport costs.  相似文献   

10.
Considering the current issues of carbon control and the desire to become less dependent on imported oil, the utilization of renewable hydrocarbons for the reduction of CO2 emission and production of liquid synthetic fuels/chemicals has been proposed by researchers worldwide. Efforts to make chemicals/fuels from renewable resources have escalated over the past few years. Biomass-based renewable hydrocarbons are considered to be one of the sources with the highest potential to contribute to the energy needs of modern society for both developed and developing economies worldwide. Fast pyrolysis is becoming an important thermal route to convert biomass to liquid fuels; however, the raw bio-oils obtained have a number of negative properties such as high acidity, high water content, and variable viscosity over time. To overcome this problem and produce bio-oil of good quality, process of ‘hyropyrolysis’ has been developed. The scope for using pyrolysis under hydrogen pressure and also by process of hydropyrolysis followed by in situ hydroconversion of vapors to give oils with much lower oxygen contents has been reviewed.  相似文献   

11.
Biochar has the potential to amend degraded soil and improve crop yield. An experiment involving municipal sludge pyrolysis was carried out in a horizontal quartz reactor over the temperature range of 300–700 °C. The aim of this work was to investigate the influence of pyrolysis temperature on product distribution and biochar properties required for agronomic applications. Results of the experiment showed that yield and energy conversion efficiency of biochar decreased as pyrolysis temperatures rose, while bio-oil and syngas increased gradually. Biochar aromaticity barely changed, while polarity gradually decreased and specific surface area increased with a rise in pyrolysis temperature. Nutritive elements showed different enriching characteristics in the sludge pyrolysis process: nitrogen failed to enrich in biochars, whereas both phosphorus and potassium were enriched. Heavy metals showed good stability in the pyrolysis process except chromium; the contents of all metals used in the biochar conformed to Chinese control standards for agronomic application.  相似文献   

12.
Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.  相似文献   

13.
The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.  相似文献   

14.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

15.
If we don't change the way we are going, we will end up where we are headed,” the saying goes. Well, with respect to environmental disputes, we are changing the way we are going, and we are doing it primarily through mediation. We are reaching for and finding cooperative, collaborative, and less expensive ways of solving problems. We are using mediation to eliminate or minimize the side effects of environmental issues and problematic sites. We are avoiding or dramatically reducing the “transactional” costs that have devastated so many persons and businesses involved in environmental problems. And we are finding ways to utilize collective intelligence and minimize collective damage through mediation. It's definitely good business.  相似文献   

16.
Plastics are present in a lot of aspects of everyday life. They are very versatile and resistant to microbial attack. Polyurethanes are used in several industries and are divided in polyester and polyether polyurethanes and there are different types among them. Despite their microbial resistance, they are susceptible to the attack of fungi and bacteria but the mechanism to elucidate its biodegradation are unknown. There are reports from bacteria and fungi that are capable of degrading polyurethane but the studies about the enzymes that attack the plastic are focused on bacterial enzymes only. The enzymes reported are of type esterase and protease mainly since these enzymes are very unspecific and can recognize some regions in the polyurethane molecule and hydrolyze it. Fungal enzymes have been studied prior the 1990s decade but recently, some authors report the use of filamentous fungi to degrade polyurethane and also report some characteristics of the enzymes involved in it. This review approaches polyurethane biodegradation by focusing on the enzymes reported to date.  相似文献   

17.
高耀文  张晖 《化工环保》2016,36(4):357-363
对高级氧化技术再生吸附剂的研究现状进行了综述,重点介绍了光催化氧化技术、Fenton氧化技术、活化过硫酸盐氧化技术和臭氧氧化技术4种方法再生吸附剂的应用,分析了4种氧化技术用于吸附剂再生的机理,指出了各种再生方法存在的不足,并对后续的研究方向进行了展望。  相似文献   

18.
综述了含氰化物废水的主要处理技术和存在的问题,探讨了微生物降解氰化物的生物化学途径以及生物降解机理.介绍了影响氰化物生物降解性能的因素和含氰化物废水的生物处理特点,综述了含氰化物废水生物处理的最新研究进展,并展望了微生物降解氰化物技术的发展趋势与应用前景.  相似文献   

19.
从氧化、羧基化、酯化、接枝共聚、醚化等改性方法入手,对淀粉絮凝剂的制备和应用进行了介绍,对比分析了各工艺的特点,总结了面临的问题,展望了今后的研究方向。指出:进一步丰富醚化剂的种类、对淀粉进行复合型改性、淀粉絮凝剂与传统絮凝剂复配使用是该领域的发展趋势。  相似文献   

20.
火电厂CO2减排技术主要包括燃烧前处理、燃烧中减排及燃烧后捕集三类。介绍了IGCC、富氧燃烧、胺吸收法、生物法等CO2捕集与封存技术,分析其存在问题及应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号