首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 12 毫秒
1.
Journal of Material Cycles and Waste Management - To evaluate the agronomic potential of biochar, we prepared a series of biochars using rice straw waste under the limited oxygen cracking condition...  相似文献   

2.
Biochar has the potential to amend degraded soil and improve crop yield. An experiment involving municipal sludge pyrolysis was carried out in a horizontal quartz reactor over the temperature range of 300–700 °C. The aim of this work was to investigate the influence of pyrolysis temperature on product distribution and biochar properties required for agronomic applications. Results of the experiment showed that yield and energy conversion efficiency of biochar decreased as pyrolysis temperatures rose, while bio-oil and syngas increased gradually. Biochar aromaticity barely changed, while polarity gradually decreased and specific surface area increased with a rise in pyrolysis temperature. Nutritive elements showed different enriching characteristics in the sludge pyrolysis process: nitrogen failed to enrich in biochars, whereas both phosphorus and potassium were enriched. Heavy metals showed good stability in the pyrolysis process except chromium; the contents of all metals used in the biochar conformed to Chinese control standards for agronomic application.  相似文献   

3.
Journal of Material Cycles and Waste Management - In this work, the trunk and flower stalk of henequen were characterized and subjected to pyrolysis at high temperatures. The chemical composition...  相似文献   

4.
For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.  相似文献   

5.
Automobile shredded residue is a potential solid fuel when its metal and chloride-containing components have been removed. The authors have investigated physical separation of automobile shredded residue to isolate components that may be used as solid fuel and reported that agglomerates of entangling fiber-like material are formed during crushing. These agglomerates make removal of metals and chloride-containing components difficult, and the paper proposes a treatment flowchart consisting of separate treatments of the coarse size fraction containing entangling fiber-like components and the smaller size fraction containing particulate matter. This paper reports the treatment of the smaller size fraction treated with jigging to obtain a low-ash and low-chloride-content product. A new washability curve was developed based on float and sink analysis test results, and it was applied to estimate the gravity separation performance of treatments such as jigging and dense medium separation. The estimated results show good agreement with the experimental results of jig separation.  相似文献   

6.
The influence of the proportion of C- and N-rich raw materials (initial C/N ratio) and bulking agent on the chemical functional groups composition, humic-like substances (HS-like) content and physicochemical properties of composts was assessed. To achieve these goals, seven initial mixtures (BA1–6 and C1) of dog food (N-rich raw material) were composted with wheat flour (C-rich raw material). Composts were analyzed in terms of chemical functional groups, physicochemical, maturity and stability parameters.The C-rich raw material favored the formation of oxidized organic matter (OM) during the composting process, as suggested by the variation of the ratios of the peaks intensity of FT-IR spectra, corresponding to a decrease of the polysaccharides and an increase of aromatic and carboxyl-containing compounds. However, although with high proportion of C-rich raw material, mixtures with low initial C/N seems to have favored the accumulation of partially oxidized OM, which may have contributed to high electrical conductivity values in the final composts. Therefore, although favoring the partial transformation of OM into stabilized HS-like, initial mixtures with high proportion of C-rich raw material but with low initial C/N led to unstable composts.On the other hand, as long as a high percentage of bulking agent was used to promote the structure of biomass and consequently improve of the aeration conditions, low initial C/N was not a limiting factor of OM oxidation into extractable stabilized humic-like acids.  相似文献   

7.
Sunflower residue, an agricultural waste material for the removal of lead (Pb) and cadmium (Cd) from aqueous solutions were investigated using a batch method. Adsorbent was prepared by washing sunflower residue with deionized water until the effluent was colorless. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, initial concentration and contact time. The results indicated that the adsorbent showed good sorption potential and maximum metal removal was observed at pH 5. Within 150 min of operation about 97 and 87 % of Pb and Cd ions were removed from the solutions, respectively. Lead and Cd sorption curves were well fitted to the modified two-site Langmuir model. The adsorption capacities for Pb and Cd at optimum conditions were 182 and 70 mg g?1, respectively. The kinetics of Pb and Cd adsorption from aqueous solutions were analyzed by fitting the experimental data to a pseudo-second-order kinetic model and the rate constant was found to be 8.42 × 10?2 and 8.95 × 10?2 g mg?1 min?1 for Cd and Pb, respectively. The results revealed that sunflower can adsorb considerable amount of Pb and Cd ions and thus could be an economical method for the removal of Pb and Cd from aqueous systems.  相似文献   

8.
Hydraulic properties of waste and cover soil from Kimpo Metropolitan Landfill were experimentally measured by laboratory tests. The degree of compaction was changed to identify the effect on hydraulic conductivity, field capacity, and permanent wilting point. Properties were utilized in developing a reliable numerical tool for leachate analysis. HELP, a simulation model for hydrologic evaluation of landfill performance, was adopted for that purpose. For calibration, results from simulation using the parameter values measured by laboratory tests were compared against the field data. The model was applied to predict the leachate level change according to the degree of compaction and cover soil thickness variation. It was found that the increase in the degree of compaction for intermediate cover soil and waste results in the decrease of field capacity and hydraulic conductivity, hence, the increase of leachate level. The effect of cover layer thickness on the leachate level was minor. Based on the findings from laboratory and numerical experiments, a guideline for reclamation practice was recommended.  相似文献   

9.
The ability of low-cost activated carbon prepared from Ceiba pentandra hulls, an agricultural waste material, for the removal of lead and zinc from aqueous solutions has been investigated. In the batch tests experimental parameters were studied, including solution pH, contact time, adsorbent dose and initial metal ions concentration. The adsorbent exhibited good sorption potential at pH 6.0. Maximum removal of lead (99.5%) and of zinc (99.1%) with 10 g/l of sorbent was observed at 50 mg/L sorbate concentration. Removals of about 60-70% occurred in 10 min, and equilibrium was attained at around 50 min for both metals. The functional groups (CO, SO,-OH) present on the carbon surface were responsible for the adsorption of metal ions. The adsorption parameters were analysed using both the Freundlich and Langmuir models. The data are better fitted by the Freundlich isotherm as compared to Langmuir model, and the adsorption capacities for lead and zinc were 25.5 and 24.1 mg/g, respectively. Kinetics of adsorption obeyed a second order rate equation and the rate constant was found to be 2.71 x 10(-2) and 2.08 x 10(-2) g/mg/min for lead and zinc, respectively. The desorption studies were carried out using dilute HCl, and the effect of HCl concentration on desorption was studied. Maximum desorptions of 85% for lead and 78% for zinc were attained with 0.15 M HCl.  相似文献   

10.
Journal of Polymers and the Environment - This study aims to make environment-friendly plywood panels acceptable in terms of both mechanical and physical properties using chitosan as a natural...  相似文献   

11.
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.  相似文献   

12.
13.
Using solid state 13C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.  相似文献   

14.
In this experiment, three different fungal species, viz. Trichoderma viridae, Aspergillus niger and Phanerochaete chrysosporium, were inoculated in 7 day and 15 day partially decomposed water hyacinth to study their effect on enzymatic activities, microbial respiration and fungal biomass of the final stabilized product. The results suggested that increasing the duration of pre-composting from 7 days to 15 days did not show any significant effect on the activities of hydrolytic enzymes. Inoculation of fungi significantly (P ? 0.05) increased cellulase, protease and acid and alkaline phosphatase activities. The highest value of ergosterol was recorded in A. niger-inoculated vermicomposts. Inoculation of P. chrysosporium in initial organic waste registered the highest chitin content in vermicompost. A comparison of fungal biomass and chitin content revealed a conversion factor of 2.628 with a standard deviation of 0.318. Due to significant correlation (r = 0.864), this conversion factor allows for the calculation of fungal biomass from chitin, which is comparatively more stable than ergosterol.  相似文献   

15.
The elemental composition of the industrial waste incineration bottom ash (IWIBA) samples collected from three different types of incinerator with different kinds of wastes were compared. The major-to-ultratrace elements in the IWIBA samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). As a result, ca. 40 elements in the concentration range from milligrams per gram to submicrograms per gram could be determined with relative standard deviations of less than 5%. The IWIBA sample from petrochemical wastes contained lower concentrations of the elements, because fewer mineral constituents were contained in the input waste materials. On the contrary, the elemental concentrations in the IWIBA sample from industrial solid wastes provided the highest values for most elements, while the elemental compositions of the IWIBA sample from food wastes were similar to those of municipal solid waste incineration bottom ash. In addition, it was found from the analytical results that the levels of various heavy metals such as Cr, Mn, Fe, Ni, Cu, As, Zr, Mo, Sb, Ba, and Pb were higher in the IWIBA samples than in municipal solid waste incineration bottom ash. The enrichment factors of the elements in the IWIBA samples were estimated from the analytical results to compare the elemental distributions in incineration bottom ashes in relation to their mining influence factors, which are the indices for human use of the elements.  相似文献   

16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号