首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results presented in this paper are part of a project aimed at designing an original solution for the treatment of used disposable diapers permitting the recycling of materials and the recovery of energy. Diapers must be collected separately at source and transported to an industrial facility to undergo special treatment which makes it possible to separate plastics and to recover a biodegradable fraction (BFD) made up mainly of cellulose. The methane yield of BFD was measured and found to be 280 ml CH4/g VSfed on average. 150 kg of dry BFD can be retrieved from the treatment of one ton of used disposable diapers, representing an energy potential of about 400 kW h of total energy or 130 kW h of electricity. As the treatment process for used diapers requires very high volumes of water, the setting up of the diaper treatment facility at a wastewater treatment plant already equipped with an anaerobic digester offers the advantages of optimizing water use as well as its further treatment and, also, the anaerobic digestion of BFD. The lab-scale experiments in a SBR showed that BFD co-digestion with sewage sludge (38% BFD and 62% waste activated sludge on volatile solids basis) was feasible. However, special attention should be paid to problems that might arise from the addition of BFD to a digester treating WAS such as insufficient mixing or floating particles leading to the accumulation of untreated solids in the digester.  相似文献   

2.
The production potential of refuse derived fuel (RDF) in the largest industrial city of Korea is discussed. The purpose of this study is to evaluate the energy potential of the RDF obtained from utilizing combustible solid waste as a fuel resource. The total amount of generated solid waste in the industrial city was more than 3.3 million tonnes, which is equivalent to 3.0 tonnes per capita in a single year. The highest amount of solid waste was generated in the city district with the largest population and the biggest petrochemical industrial complex (IC) in Korea. Industrial waste accounted for 89% of the total amount of the solid waste in the city. Potential RDF resources based on combustible solid wastes including wastepaper, wood, rubber, plastic, synthetic resins and industrial sludge were identified. The amount of combustible solid waste that can be used to produce RDF was 635,552 tonnes/yr, consisting of three types of RDF: 116,083 tonnes/yr of RDF-MS (RDF from municipal solid waste); 146,621 tonnes/yr of RDF-IMC (RDF from industrial, municipal and construction wastes); and 372,848 tonnes/yr of RDF-IS (RDF from industrial sludge). The total obtainable energy value from the RDF resources in the industrial city was more than 2,240,000 × 106 kcal/yr, with the following proportions: RDF-MS of 25.6%, RDF-IMC of 43.5%, and RDF-IS of 30.9%. If 50% or 100% of the RDF resources are utilized as fuel resources, the industrial city can save approximately 17.6% and 35.2%, respectively, of the current total disposal costs.  相似文献   

3.

Pharmaceuticals can enter the environment through disposal in toilets, sinks and general waste. In the UK, household medicines are correctly disposed of by returning them to a pharmacy. This study examined household patterns of medicine waste, storage and disposal practices via a cross-sectional survey with 663 UK adults. Multiple regression was used to explore the contribution of key variables on self-reported medicines disposal behaviour. Analysis demonstrated that age, information, awareness, probability, attitude and intention all predicted correct disposal behaviour. Results indicate that multiple factors influence different disposal destinations uniquely. Affect and age increase disposal in sink/toilet but reduce disposal in bin. Presence of children increase bin and sink/toilet disposal but decrease pharmacy returns. Awareness and received information on correct disposal reduce bin disposal and increase pharmacy returns. The results suggest people use different mental models for each destination with disposal in sink/toilets and bins considered quicker and safer in the presence of children or for those feeling anxious. It is important to understand the capability, opportunity and motivation people have to return medicines to the pharmacy in addition to raising awareness of correct medicine disposal.

  相似文献   

4.
To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound + thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90 °C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90 °C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H2S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90 °C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments.  相似文献   

5.
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.  相似文献   

6.

Home medical care (HMC) is advancing not only in Japan but also throughout the world. In Japan, HMC waste is legally classified as municipal waste. Nevertheless, some municipalities do not collect some or all the HMC waste because of fear of infection. Therefore, this study was conducted to clarify the following two issues: First, have the municipalities made progress in collecting and appropriate disposal of HMC waste in the past 13 years? Second, is there a difference between a large city and a small city in terms of appropriate disposal progress? A total of 687 municipalities published the treatment of HMC waste. Currently, 42 municipalities collected all HMC waste. 236 municipalities were collecting HMC waste except for self-injection needle. 117 municipalities were collecting HMC waste except for self-injection needle and Syringe. The collection status of HMC waste was better in cities with high population than in cities with low population. HMC waste collection status was progressed over 13 years. However, more than 60% of the municipality staff stated that they could not avoid being anxious about infection caused by HMC waste. We suggest that providing HMC waste education to the municipalities wherein these efforts have not yet progressed is important.

  相似文献   

7.
More and more sewage sludge is being produced in China. Safe and economical methods for sewage sludge disposal should be found considering the increase in sewage treatment. In order to verify the feasibility of sludge disposal on newly built highway embankments, five treatments (0, 15, 30, 60 and 120 tons ha−1) of sewage sludge compost (SSC) were added to a silty-clay embankment soil on the Xi-Huang highway. The results showed that amendment with SSC increased soil available N, available P, organic matter, cation exchange capacity, and water content, and decreased soil bulk density. Application of SSC enhanced ryegrass growth and reduced runoff and soil erosion. Heavy metal losses from sediments in runoff remained constant or decreased relative to the control until a rate of 60 tons ha−1 was exceeded, when heavy metal losses appeared to increase.  相似文献   

8.
Fresh leachate, generated in municipal solid waste incineration (MSWI) plants, contains various pollutants with extremely high strength organics, which usually requires expensive and complex treatment processes. This study investigated the feasibility of blending treatment of MSWI leachate with municipal wastewater. Fresh MSWI leachate was pretreated by coagulation–flocculation with FeCl3 2 g/L and CaO 25 g/L, plate-and-frame filter press, followed by ammonia stripping at pH above 12. After that, blending treatment was carried out in a full-scale municipal wastewater treatment plant (WWTP) for approximately 3 months. Different operational modes consisting of different pretreated leachate and methanol addition levels were tested, and their performances were evaluated. Results showed that throughout the experimental period, monitored parameters in the WWTP effluent, including COD (<60 mg/L), BOD5 (<20 mg/L), ammonium (<8 mg/L), phosphorus (<1.5 mg/L) and heavy metals, generally complied with the Chinese sewage discharged standard. Under the experimental conditions, a certain amount of methanol was needed to fulfill TN removal. An estimation of the operation cost revealed that the expenditure of blending treatment was much lower than the total costs of respective treatment of MSWI leachate and municipal wastewater. The outcomes indicated that blending treatment could not only improve the treatability of the MSWI leachate, but also reduce the treatment cost of the two different wastewaters.  相似文献   

9.
High rate algal ponds are an economic and sustainable alternative for wastewater treatment, where microalgae and bacteria grow in symbiosis removing organic matter and nutrients. Microalgal biomass produced in these systems can be valorised through anaerobic digestion. However, microalgae anaerobic biodegradability is limited by the complex cell wall structure and therefore a pretreatment step may be required to improve the methane yield. In this study, ultrasound pretreatment at a range of applied specific energy (16–67 MJ/kg TS) was investigated prior to microalgae anaerobic digestion. Experiments showed how organic matter solubilisation (16–100%), hydrolysis rate (25–56%) and methane yield (6–33%) were improved as the pretreatment intensity increased. Mathematical modelling revealed that ultrasonication had a higher effect on the methane yield than on the hydrolysis rate. A preliminary energy assessment indicated that the methane yield increase was not high enough as to compensate the electricity requirement of ultrasonication without biomass dewatering (8% VS).  相似文献   

10.

Graft copolymerization is a distinctive approach to modify the inherently cheap natural fibers (NFs) using different initiators to incorporate synthetic polymer side chains allowing development of novel types of hybrid materials. This method has been widely applied to develop a variety of NFs based adsorbents for decontamination of toxic pollutants from the aqueous environment. However, the development of high-performance adsorbents from NFs is steady challenged by the need to preserve the sustainability during graft modifications and applications. This article critically reviews the progress on modifications of NFs by graft copolymerization of polar monomers on NFs using various initiating methods and their applications in wastewater treatment. Particularly, the applications of the grafted NFs in removal of heavy metal ions, synthetic dyes, oil spills and extraction of precious metals from wastewater are elaborated. The critical challenges to the viability and sustainability of NFs-based adsorbents with respect to functionalization by graft copolymerization and environmental impacts are discussed and the future research directions are also outlined.

  相似文献   

11.
This study was carried out to assess the material and energy recovery by organic solid wastes generated from a poultry slaughterhouse. In a poultry slaughterhouse involving the slaughtering of 100,000 heads per day, poultry manure & feather from the mooring stage, blood from the bleeding stage, intestine residue from the evisceration stage, and sludge cake from the wastewater treatment plant were discharged at a unit of 0.24, 4.6, 22.8, and 2.2 Mg day?1, consecutively. The amount of nitrogen obtained from the poultry slaughterhouse was 22.36 kg 1000 head?1, phosphate and potash were 0.194 kg 1000 head?1 and 0.459 kg 1000 head?1, respectively. As regards nitrogen recovery, the bleeding and evisceration stages accounted for 28.0% and 65.8% of the total amount of recovered nitrogen. Energy recovered from the poultry slaughterhouse was 35.4 N m3 1000 head?1 as CH4. Moreover, evisceration and wastewater treatment stage occupied 88.1% and 7.2% of the total recovered CH4 amount, respectively.  相似文献   

12.
This work focused on anaerobic biodegradation of blends composed of glycerol-plasticized polyvinyl alcohol (PVA) and biopolymer (starch, gellan, xanthan) in an aqueous environment, after inoculation with digested activated sludge from a municipal wastewater treatment plant. Glycerol degradability is comparable to degradability of used modifying agents. Modifying agents added in the 20–40 wt% range proportionally increased biodegradation degree (Dt) calculated from balance of transformed carbon in the system. Biodegradation degree of polysaccharides and glycerol attained 95% and over. For PVA it was only 6.5% (in breakdown times up to 500 h). Content of polysaccharides favorably affects biodegradation degree of polyvinyl alcohol blends, but at the expense of reduced mechanical properties of resultant products.  相似文献   

13.
The US Environmental Protection Agency (US EPA) launched the Resource Conservation Challenge (RCC) in 2002 to help reduce waste and move towards more sustainable resource consumption. The objective of the RCC is to help communities, industries, and the public think in terms of materials management rather than waste disposal. Reducing cost, finding more efficient and effective strategies to manage municipal waste, and thinking in terms of materials management requires a holistic approach that considers life-cycle environmental tradeoffs. The US EPA's National Risk Management Research Laboratory has led the development of a municipal solid waste decision support tool (MSW-DST). The computer software can be used to calculate life-cycle environmental tradeoffs and full costs of different waste management or materials recovery programs. The environmental methodology is based on the use of life-cycle assessment and the cost methodology is based on the use of full-cost accounting. Life-cycle inventory (LCI) environmental impacts and costs are calculated from the point of collection, handling, transport, treatment, and disposal. For any materials that are recovered for recycling, offsets are calculated to reflect potential emissions savings from use of virgin materials. The use of the MSW-DST provides a standardized format and consistent basis to compare alternatives. This paper provides an illustration of how the MSW-DST can be used by evaluating ten management strategies for a hypothetical medium-sized community to compare the life-cycle environmental and cost tradeoffs. The LCI results from the MSW-DST are then used as inputs into another US EPA tool, the Tool for the reduction and assessment of chemical and other environmental impacts, to convert the LCI results into impact indicators. The goal of this paper is to demonstrate how the MSW-DST can be used to identify and balance multiple criteria (costs and environmental impacts) when evaluating options for materials and waste management. This type of approach is needed in identifying strategies that lead to reduced waste and more sustainable resource consumption. This helps to meet the goals established in the US EPA's Resource Conservation Challenge.  相似文献   

14.
The aim of this paper was to combine water pinch analysis and oxygen pinch analysis for more cost-effective wastewater treatment. Emphasis was placed on energy and resource saving. The variables that affect the cost of wastewater treatment are the quantity and the quality of the wastewater to be treated. The quantity of the wastewater to be treated was directly proportional to the treatment cost. The quality of the wastewater was inversely proportional to the treatment cost. It was found that the quantity of wastewater treated could be decreased by the application of water pinch analysis. This application also had a negative effect on the quality of the wastewater. The effect of the application of water pinch analysis decreased the quality of the wastewater being treated, hence increasing the treatment cost. This effect was negated by the application of a combined water–oxygen pinch analysis. The quality of the wastewater determined the amount of oxygen required. The oxygen pinch concept addresses this problem and in addition gives even more information about the health of the working micro-organisms. A 22.6% reduction in wastewater quantity was realised applying combination of both pinch concepts. A reduction of 23.44% in the oxygen requirement for the biodegradation of wastewater was achieved. An important feature of the combined water–oxygen pinch analysis is the balance obtained between the quantity of wastewater produced and the quality of this wastewater.  相似文献   

15.
This paper considers selected efficiency rates and process data of aerobic and anaerobic procedures for the treatment of municipal solid waste and residual waste. Data are exclusively related to mechanical-biological treatment (MBT) procedures for generating waste appropriate for landfilling. The following aspects are regarded: general framework conditions for the application of MBT, efficiency of decomposition and of stabilisation, air and water emissions and energy balances. The presented data can be used for more efficient planning. In comparison to aerobic processes, anaerobic digestion can be ecologically advantageous, particularly with regard to exhaust emissions and energy balances. On the other hand, the wastewater emissions and the wastewater treatment required must be regarded as disadvantageous. Due to the relatively short period of operational history of most anaerobic processes for mechanical-biological waste treatment and thus limited experiences, operational reliability of anaerobic processes is slightly lower. Extensive biological stability of the treated waste for low-emission disposal cannot be reached by anaerobic digestion alone, but only in combination with additional aerobic post-treatment. In connection with the utilisation of renewable energies and the rising relevancy of climate protection, it can be affirmed that anaerobic digestion for the treatment of municipal solid waste has a high potential for further development.  相似文献   

16.
Given the magnitude of stormwater runoff (from separate storm drainage systems) and its pollutional contribution, the treatment of stormwater would generate residuals in amounts equal to or in excess of the volume of sludge now generated by municipal wastewater treatment. The characteristics of stormwater runoff differ substantially from that of wastewater or combined sewer overflow (CSO) in several important parameters, most notably suspended solids (SS) and organic content. The increased SS content of stormwater runoff results in higher volumes of residuals and increased handling and disposal costs. Similarly, the lower organic and nutrient content of stormwater runoff limits both the effectiveness of conventional biological treatment processes and land application disposal options. Several treatment and handling approaches are discussed and evaluated, including both centralized and satellite options. In addition, the primary and secondary economic (e.g. cost, land requirements) and environmental (e.g. air and water pollution, public health, etc.) impacts of stormwater runoff residuals treatment, handling, and disposal are reviewed.  相似文献   

17.

The concern about protecting water quantity and quality is one of the most severe challenges of the twenty-first century since the demand for water resources grows as the population and its needs grow. Additionally, and as expected, most human activities produce wastewater containing undesirable contaminants. On the other hand, the generation of agricultural waste and its inappropriate disposal causes further problems. Current wastewater treatment methods involve a combination of physical and chemical processes, technologies, and operations to remove pollutants from effluents; adsorption is an excellent example of an effective method for wastewater treatment, and biochar is currently one of the most valuable adsorbents. This review focuses on new research about applying biochar produced from agricultural waste as a low-cost and environmentally friendly method for removing ammonium and phosphates from aqueous solutions.

  相似文献   

18.
The effects of thermal pretreatment on the physical and chemical properties of three typical municipal biomass wastes (MBWs), kitchen waste (KW), vegetable/fruit residue (VFR), and waste activated sludge (WAS) were investigated. The results show that thermal pretreatment at 175 °C/60 min significantly decreases viscosity, improves the MBW dewatering performance, as well as increases soluble chemical oxygen demand, soluble sugar, soluble protein, and especially organic compounds with molecular weights >10 kDa. For KW, VFR and WAS, 59.7%, 58.5% and 25.2% of the organic compounds can be separated in the liquid phase after thermal treatment. WAS achieves a 34.8% methane potential increase and a doubled methane production rate after thermal pretreatment. In contrast, KW and VFR show 7.9% and 11.7% methane decrease because of melanoidin production.  相似文献   

19.
Mixed glass cullet (crushed recycled glass containers) is stockpiled uncovered before use as roadway construction aggregate or daily cover in landfills. Rainwater that leaches through the stockpiles dissolves and suspends contaminants such as those from food residuals and paper labels. The objective of this study was to determine leachate quantity and quality from cullet stockpiles as a basis for development of Best Management Practices (BMPs). Four 35-tonne field stockpiles were set up for leachate analysis and to determine the effects of mechanical turning treatment on the leachate. Field-collected leachate and laboratory-generated washwater of cullet (water:cullet = 3:1 by weight) were both analyzed for basic wastewater parameters, which showed pollutant levels comparable to or higher than those of untreated domestic wastewater or urban stormwater. While organic contamination decreased substantially (e.g., washwater BOD > 95% reduction), TKN and total-phosphorus levels in leachate ranged between 11.6–154 mg L?1 and 1.6–12.0 mg L?1, respectively, and remained comparable to levels found in untreated domestic wastewater after four months. Turning enhanced the degradation of the organic constituents inside the stockpiles, which was confirmed by elevated temperatures. Based on this study, leachate from glass cullet stockpiles should not be released to surface water. For leachate from long-term cullet stockpiles, release to groundwater should be only done after treatment to reduce nitrogen levels.  相似文献   

20.
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine’s program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine’s program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine’s program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste was collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine’s program, its positive aspects warrant consideration by other governments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号