共查询到2条相似文献,搜索用时 0 毫秒
1.
Shigeki Uemura Akiyoshi Ohashi Hideki Harada Toshihiro Hoaki Takashi Tomozawa Takahiko Ohara Reiichi Ojima Tetsuya Ishida 《Waste management & research》2008,26(3):256-260
Inactivation of indigenous indicator micro-organisms such as faecal coliforms, coliphages, and faecal streptococci was investigated in a full-scale biogas plant that mainly digested cow manure. The biogas plant consisted principally of a feed reservoir, fermentation tank (37 degrees C), heat-inactivation process (70 degrees C), and five reservoirs for the heat-inactivated, digested manure that was used by a local livestock farmer as liquid fertilizer. Although all the indicators tended to exhibit stepwise decreases with each stage of treatment, coliphages were found to be more capable of surviving than faecal coliforms and faecal streptococci under mesophilic anaerobic conditions as well as high temperature conditions (heat-inactivation at 70 degrees C). Liquid fertilizer produced at the biogas plant had faecal coliform densities less than the stipulations of the US EPA 40 CFR 503 Class A limits. Heat-inactivation tests indicated that although coliphages exhibited more tolerance than other bacterial indicators between 37 and 70 degrees C, they were more sensitive to continuous temperature increase than faecal coliforms and faecal streptococci. 相似文献
2.
Limits on the application of biosolids (anaerobically processed sludges from wastewater treatment plants) as fertilizers for the amendment of soil are becoming greater because of the accumulation of recalcitrant substances, making necessary the use of techniques that bring the concentration of xenobiotics to lower concentrations than those permitted. In general, the biosolids composting process is sufficient to reduce the usual concentration of linear alkylbenzene sulfonates (LAS) to low levels. In this work, an assessment is made on the effect of temperature in the capacity of enriched bacterial populations to biodegrade LAS, together with the influence that the available nutrients may have in the biodegradation of these compounds. The results show that the microbial metabolism of LAS was not observed in the thermophilic range. The optimum temperature for the biodegradation of LAS appears to be around 40 degrees C, this is, the lowest assayed here, and at this temperature the differences in the biodegradation of LAS among the nutritionally supplemented cultures are small. 相似文献