首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 765 毫秒
1.
轻型汽油车VOCs排放特征和排放因子台架测试研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为研究轻型汽油车尾气中VOCs的排放特征和排放因子,按照《轻型汽车污染物排放限值及测量方法》(中国Ⅲ、Ⅳ阶段)中要求,采用底盘测功机对国内现有不同品牌轻型汽车进行台架试验,并利用3级冷阱预浓缩GC-MS方法对尾气样品中VOCs物种进行定量分析.结果表明,尾气样品中共有68种VOCs被定量检出,其中芳香烃种类最多,占38.7%,烷烃占29.8%,烯烃(包含炔烃)占27.1%.不同品牌轻型车源排放谱特征基本吻合.轻型汽车的总VOCs排放因子为0.01~0.46g/km,前3位物种分别为乙烯、甲苯和苯.  相似文献   

2.
我国机动车排放VOCs及其大气环境影响   总被引:13,自引:12,他引:1  
挥发性有机化合物(volatile organic compounds,VOCs)作为大气中主要污染物之一,是O3和二次有机气溶胶(secondary organic aerosol,SOA)的重要前体物.为全面了解我国城市机动车排放VOCs对空气质量的影响,本文系统介绍了我国部分城市大气中VOCs的源解析最新成果,并分车型、分燃料综述了我国机动车VOCs的排放因子、成分谱及其对二次污染的贡献,以期为未来机动车VOCs排放和控制提供数据和理论支持.研究发现,机动车是我国城市大气VOCs的最大源,平均贡献率为36.8%;摩托车和轻型汽油车是主要排放车型.机动车尾气排放VOCs对城市O3和SOA生成都有重要贡献,随着排放标准提升和运行工况改善,机动车排放因子和臭氧生成潜势(ozone formation potentials,OFPs)明显降低,成分谱以芳香烃和烯烃等活性组分为主,对二次污染的贡献较大.  相似文献   

3.
珠江三角洲机动车挥发性有机物排放化学成分谱研究   总被引:25,自引:5,他引:20  
根据珠三角地区机动车挥发性有机物排放(VOCs)贡献特征,选取在用轻型汽油车、轻型柴油车、液化石油气(LPG)出租车和摩托车,采用底盘测功机及实际道路测试,获取了以上车型尾气排放的VOCs化学成分(59种非甲烷碳氢化合物)特征谱.轻型汽油车以及摩托车的尾气组成中芳香烃含量最高,其次为烷烃;苯系物、异戊烷以及乙烯占轻型汽油车尾气VOCs组成的54.5%;苯系物、异戊烷以及乙炔占摩托车尾气组成的54.6%.轻型柴油车的尾气组成中烷烃比例最高,其次是芳香烃和烯炔烃.除了苯和甲苯,正十一烷、正十二烷、正癸烷、乙烯、丙烯、1-丁烯亦在柴油车尾气中占有重要比例(41.2%).LPG出租车尾气组成以丙烷、正丁烷、异丁烷为主,并伴有较高比例的1,2,4-三甲基苯、1,2,3-三甲基苯和甲苯.与类似研究比较结果表明:由于在油品、排放标准及采样与分析方法等方面的差异,机动车排放源成分谱相关研究结果仍存在一定的差异性,建议对机动车成分谱研究在尾气采样与分析方法等方面进行规范化和标准化.  相似文献   

4.
针对机动车挥发性有机物(VOCs)排放特征研究中缺乏含氧VOCs(OVOCs)覆盖、缺乏最新国VI排放标准特征识别等问题,本研究选取了涵盖国I~国VI不同排放标准的轻型汽油车和国Ⅲ~国Ⅴ柴油车为研究对象进行底盘测功机测试,采用SUMMA罐和DNPH管采样相结合的方法,探究了不同排放标准下机动车尾气中VOCs排放特征的变化趋势及启动方式对VOCs排放特征的影响.结果表明,不同排放标准的轻型汽油车尾气组成呈现较大差异.随着排放标准的升级,烷烃、烯炔烃和芳香烃的质量比例逐渐减少,OVOCs逐渐增加,国Ⅰ~国IV轻型汽油车排放以烷烃和芳香烃为主,国V~国Ⅵ轻型汽油车排放以OVOCs为主.国VI轻型汽油车中OVOCs占比高达58.0%,其中,甲醛、乙醛和丙酮合计占47.3%.不同排放标准的柴油车尾气中VOCs均以OVOCs和烯炔烃为主,占79.0%~83.0%.此外,冷启动是机动车尾气VOCs排放的主要阶段,此阶段的VOCs排放因子显著高于热启动,但随着排放标准升级,柴油车在启动阶段的VOCs排放降幅仅有约40%,显著小于全工况排放降幅(77.5%),表明柴油车启动过程对VOCs排放贡献随排放标准升级逐步加大.本研究凸显了在我国机动车排放标准不断升级的背景下VOCs排放的重要性,需要在制定机动车VOCs排放控制策略中重点关注柴油车尾气中烯炔烃和汽油车尾气中OVOCs减排.  相似文献   

5.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

6.
王海林  辛国兴  朱立敏  薛松  聂磊  郝润 《环境科学》2021,42(11):5193-5200
选取衡水市3家典型橡胶制品企业作为研究对象,通过GC-MS/FID对其VOCs排放特征进行研究,并运用最大增量反应活性系数(maximum incremental reactivity,MIR)和气溶胶生成系数(fractional aerosol coefficient,FAC)分别对其臭氧生成潜势(ozone formaiton potential,OFP)和二次有机气溶胶(secondary organic aerosol,SOA)生成潜势进行评估.结果表明,橡胶制品行业的VOCs排放种类主要包括烷烃类、酮类、醛类、醇类和苯系物等.对于传统的只有炼胶工艺和硫化工艺的橡胶制品企业,其特征污染物主要为酮类和醇类,而对于涉及涂胶工艺和喷漆工艺的橡胶制品企业来说,其特征污染物为苯系物.对典型生产工艺的臭氧和SOA的生成潜势进行了评估:臭氧影响方面,对于不涉及涂胶和喷漆工艺的橡胶制品企业,臭氧生成贡献主要来自于含氧烃,对于涉及涂胶和喷漆工艺的企业,由于胶黏剂和漆料等有机溶剂的大量使用,苯系物对臭氧生成的贡献还是要远远大于其它VOCs物种,占到了VOCs总贡献的82.9%;SOA影响方面,橡胶制品企业的SOA贡献基本全部来自于苯系物,其中炼胶和硫化环节的贡献非常小,SOA贡献的主要来源是涂胶和喷漆环节,其中又以喷漆环节的贡献最大.因此,对于只有炼胶和硫化等工艺的传统橡胶制品企业,应优先控制含氧烃的排放,而对于涉及涂胶和喷漆等工艺的橡胶制品企业,应优先控制苯系物的排放.  相似文献   

7.
国六柴油机DPF再生时VOCs排放特性   总被引:3,自引:2,他引:1  
钱枫  薛常鑫  许小伟  马东  李朋  祝能 《环境科学》2020,41(2):674-681
颗粒物捕集器(DPF)是柴油机满足国六排放标准的必备装置之一.经台架实验证明,氧化型催化转化器(DOC)辅助DPF再生过程中挥发性有机物(VOCs)排放会大幅度升高,而2014年制定的《道路机动车大气污染物排放清单编制技术指南》并未考虑到DPF再生过程对VOCs排放的影响.通过台架实验,采集国六柴油机DPF再生过程的尾气,并用气相色谱质谱技术对尾气中的VOCs进行定量分析.结果表明,国六柴油机DPF再生过程中VOCs排放有显著增加,DPF再生阶段排放的VOCs总量是不再生时的4倍,增排量为2 419. 6μg·m~(-3),且DPF再生所排放的VOCs中,烷烃的含量最高,其次为芳香烃、醛酮和烯烃,分别占总排放VOCs的42. 5%、29. 7%、24. 9%和2. 9%;用臭氧和二次有机气凝胶生成潜势对增排VOCs的大气活性进行评价,发现DPF再生过程中增排的VOCs对环境的影响显著,由增排的VOCs所生成的臭氧和二次有机气溶胶分别为4 272. 8μg·m~(-3)和9. 0μg·m~(-3),其中芳香烃和烷烃对臭氧和二次有机气溶胶生成潜势的贡献率相对较高.因此,在计算柴油车VOCs排放因子时,应考虑DPF再生的影响;且该国六柴油机DPF再生时的VOCs排放因子为1. 03 mg·(k W·h)~(-1),可为制定国六标准柴油车VOCs排放因子提供参考.  相似文献   

8.
长株潭城市群人为源VOCs排放清单及其对环境的影响   总被引:6,自引:4,他引:2  
基于长株潭城市群环境统计数据和排放系数,建立了2014年长株潭城市群人为源VOCs排放清单,并根据空间特征数据进行了3 km×3 km的空间网格分配,同时还估算了各类人为源排放VOCs的臭氧生成潜势与二次有机气溶胶生成潜势.结果表明,长株潭地区人为源VOCs排放总量为113.49 kt,其中工艺过程源、溶剂使用源和移动源为最主要的排放源,排放量分别为35.88、28.72、22.13 kt,工艺过程源中75.34%的VOCs排放量来自建材生产,溶剂使用源中建筑涂料和汽车喷涂为主要排放源;各区县中醴陵市的VOCs排放量最高为16.58 kt;长株潭地区总臭氧生成潜势为375.33 kt,溶剂使用源贡献最大为27.28%,生物质燃烧源的臭氧生成能力最强;二次有机气溶胶生成潜势中,溶剂使用源贡献比例最大为35.35%,其二次有机气溶胶生成能力也强于其它源类;空间分布特征显示城区的网格排放量较大.  相似文献   

9.
选取了北京市21家餐饮企业,检测了净化器前端和后端的挥发性有机污染物(VOCs)的浓度水平,经油烟净化器净化后,烷烃类、烯烃类、含氧VOCs类和苯系物类污染物的排放平均浓度分别为(714.62±212.17),(264.88±94.58),(374.72±57.48)和(174.93±55.19)μg/m3,烯烃类污染物中仅对四氯乙烯有明显的浓度降低效果.根据净化器对VOCs污染物的去除效果,有35.7%的净化器净化效率为负值.烯烃类污染物是餐饮油烟污染中臭氧生成的最重要的前体物,占总臭氧生成潜势的48.2%~50.7%.苯系物成为餐饮业排放污染物中二次有机气溶胶(SOA)的主要前体物,占总SOA生成潜势的95%以上.  相似文献   

10.
以18辆轻型汽油车(LDGVs)为研究对象,利用底盘测功机搭建挥发性有机物(VOCs)采样系统.利用气相色谱-质谱仪(GC-MS)和高效液相色谱(HPLC)识别了匀速25 km·h~(-1)时尾气VOCs化学成分谱和排放因子,并在分析时考虑了排放标准、行驶工况和车辆属性等因素的影响.结果表明,轻型汽油车低速匀速工况下尾气组成以烷烃(40.8%,C_5~C_7烷烃较多)为主,其次是芳香烃(29.5%)和含氧VOCs(26.0%),烯炔烃(3.6%)和卤代烃(0.1%)较少.其中,甲醛、异戊烷、甲苯、苯、间/对二甲苯、丙酮、2-甲基戊烷、正戊烷、1,2,4-三甲基苯和壬醛是比例最高的物质(52.01%).低速匀速行驶中生成了比例更低的烯烃和比例更高的C_5~C_7烷烃和OVOCs.排放标准为国III、IV和V的轻型汽油车在低速匀速工况下,VOCs排放因子分别为(50.12±46.83)、(40.26±31.15)和(3.25±0.65) mg·km~(-1).国IV到国V车的烷烃、烯炔烃、芳香烃、卤代烃和总VOCs降幅均超过88%,而OVOCs降幅只有约55%,说明OVOCs在国V车的排放富集程度更高.总体来讲,国V车排放的VOCs反应活性约为国IV车排放的VOCs反应活性的11%.车辆属性对VOCs排放的影响表现为:年份、里程和排量的增加会促进VOCs排放的整体增加,而基准质量对VOCs排放的影响相对较小.  相似文献   

11.
基于7辆国6轻型车的WLTC循环测试,计算了汽油?E10和MTBE10(汽油中添加10%体积的甲基叔丁基醚)排放的温室气体的致暖效应(GWP)、臭氧生成潜势(OFP)和非甲烷有机气体(NMOG)排放.结果表明,车队平均N2O和CH4排放的GWP分别为0.6和0.07g CO2e/km.E10和MTBE10的非CO2温室...  相似文献   

12.
Volatile organic compounds (VOCs) are major precursors for ozone and secondary organic aerosol (SOA), both of which greatly harm human health and significantly affect the Earth''s climate. We simultaneously estimated ozone and SOA formation from anthropogenic VOCs emissions in China by employing photochemical ozone creation potential (POCP) values and SOA yields. We gave special attention to large molecular species and adopted the SOA yield curves from latest smog chamber experiments. The estimation shows that alkylbenzenes are greatest contributors to both ozone and SOA formation (36.0% and 51.6%, respectively), while toluene and xylenes are largest contributing individual VOCs. Industry solvent use, industry process and domestic combustion are three sectors with the largest contributions to both ozone (24.7%, 23.0% and 17.8%, respectively) and SOA (22.9%, 34.6% and 19.6%, respectively) formation. In terms of the formation potential per unit VOCs emission, ozone is sensitive to open biomass burning, transportation, and domestic solvent use, and SOA is sensitive to industry process, domestic solvent use, and domestic combustion. Biomass stoves, paint application in industrial protection and buildings, adhesives application are key individual sources to ozone and SOA formation, whether measured by total contribution or contribution per unit VOCs emission. The results imply that current VOCs control policies should be extended to cover most important industrial sources, and the control measures for biomass stoves should be tightened. Finally, discrepant VOCs control policies should be implemented in different regions based on their ozone/aerosol concentration levels and dominant emission sources for ozone and SOA formation potential.  相似文献   

13.
Fifteen heavy-duty diesel vehicles were tested on chassis dynamometer by using typical heavy duty driving cycle and fuel economy cycle. The air from the exhaust was sampled by 2,4- dinitrophenyhydrazine cartridge and 23 carbonyl compounds were analyzed by high performance liquid chromatography. The average emission factor of carbonyls was 97.2 mg/km, higher than that of light-duty diesel vehicles and gasoline-powered vehicles. Formaldehyde, acetaldehyde, acetone and propionaidehyde were the species with the highest emission factors. Main influencing factors for carbonyl emissions were vehicle type, average speed and regulated emission standard, and the impact of vehicle loading was not evident in this study. National emission of carbonyls from diesel vehicles exhaust was calculated for China, 2011, based on both vehicle miles traveled and fuel consumption. Carbonyl emission of diesel vehicle was estimated to be 45.8 Gg, and was comparable to gasolinepowered vehicles (58.4 Gg). The emissions of formaldehyde, acetaldehyde and acetone were 12.6, 6.9, 3.8 Gg, respectively. The ozone formation potential of carbonyls from diesel vehicles exhaust was 537 mg O3/km, higher than 497 mg O3/km of none-methane hydrocarbons emitted from diesel vehicles.  相似文献   

14.
河南省2016~2019年机动车大气污染物排放清单及特征   总被引:4,自引:4,他引:0  
基于城市机动车保有量和高速公路交通流量,结合行驶里程和VOCs源谱,采用排放因子法建立了河南省2016~2019年城市和2016年高速公路机动车高分辨率大气污染物排放清单.结果表明,2016年小型客车和普通摩托车等汽油车是CO、VOCs和NH3的主要贡献源,SO2、NOx和PM主要来自重型和轻型柴油货车,国1、国3和国4标准车对污染物排放贡献突出,郑州、周口和南阳的排放量较大;高速公路8~10月的车流量较高,11月最低,城市主干道周变化和日变化分别呈现出明显的周末效应和双峰特征;排放高值区集中在交通网密集、交通流量大的城市中心及市区附近向外辐射的道路上,连霍高速和京港澳高速是高排放道路;轻型汽油车对臭氧生成潜势(OFP)贡献最大,乙烯和丙烯等5个物种对VOCs排放量和OFP贡献均较大;2016~2019年机动车保有量年均增长率为5.7%;与2016年相比,2019年VOCs排放增加2.8%,SO2、PM2.5、PM10、NH3、CO和NOx的降幅分别为76.3%、51.7%、50.3%、43.1%、16.7%和5.9%;2019年各污染物在控制政策下的实际排放量相对基准情景的减排比例在15.6%~82.4%之间.  相似文献   

15.
Vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution based on the data released by the National Bureau of Statistics, by taking the emission standards into consideration. China's vehicular emissions of carbon monoxide(CO),nitrogen oxides(NO_x), volatile organic compounds(VOCs), ammonia(NH_3), fine particulate matters(PM_(2.5)), inhalable particulate matters(PM_(10)), black carbon(BC), and organic carbon(OC) were 30,113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1 Gg, respectively, in 2006 and 34,175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2 Gg, respectively, in 2010. CO,VOCs, and NH_3 emissions were mainly from motorcycles and light-duty gasoline vehicles,whereas NO_X, PM_(2.5), PM_(10), and BC emissions were mainly from rural vehicles and heavyduty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Vehicles of pre-China Ⅰ(vehicular emission standard of China before phase Ⅰ) and China Ⅰ(vehicular emission standard of China in phase Ⅰ) were the primary contributors to all of the pollutant emissions except NH_3, which was mainly from China Ⅲ and China Ⅳ gasoline vehicles. The total emissions of all the pollutants except NH_3 changed little from2006 to 2010. This finding can be attributed to the implementation of strict emission standards and to improvements in oil quality.  相似文献   

16.
通过实际测试得到轻型汽油车蒸发排放热浸和昼间排放因子,结合北京市轻型汽油车保有量和车辆使用情况,基于MOVES模型评估北京市轻型汽油车蒸发排放总量.结果表明,国五和国六标准车辆的平均蒸发排放因子分为1.03,0.37g/test;轻型汽油车蒸发排放随行驶里程增加未出现明显劣化趋势;北京市轻型汽油车蒸发排放总量为8299...  相似文献   

17.
为掌握轻型汽油车NH3排放实际状况,以一辆配备三元催化转化器(three-way catalytic converter,TWC)的国Ⅵ轻型汽油车为研究对象,分别在全球轻型汽车驾驶工况(worldwide light-duty test cycle,WLTC)、中国轻型汽车行驶工况(China light-duty vehicle test cycle,CLTC)和美国联邦测试规程(federal test procedure,FTP-75)下进行NH3排放测试,分析WLTC工况下的瞬时NH3排放特征,以及不同环境温度(?7、0、23、35 ℃)对NH3排放的影响,并对比3种测试工况下的NH3排放因子. 结果表明:①在WLTC工况下,车辆冷起动前50 s未检测到NH3,NH3排放主要集中在低速段和中速段(前900 s),在高速段和超高速段,仅有极少量的NH3生成. 轻型汽油车在低速(v<40 km/h)的加速区间内,NH3排放量较高. ②随着环境温度的升高,NH3排放因子呈下降趋势,35 ℃时略微有所上升. 其中,?7 ℃下低速段的NH3排放因子分别是0、23和35 ℃下的1.4~2.2倍;在WLTC工况下,各种测试环境温度下车辆的NH3排放因子均表现为低速段>中速段>高速段>超高速段;在3种工况下,轻型汽油车的NH3排放因子差异较大. 其中,测试车辆在WLTC工况下的排放因子最小. 研究显示,在低温(?7 ℃)环境下轻型汽油车NH3的排放量相对较高.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号