首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
本文利用长沙市2015—2019年长沙市空气质量数据,分析长沙市大气污染的时空分布特征。结果表明:(1)2015—2019年,长沙市大气首要污染物为PM2.5、O3、PM10、NO2四种,其中PM2.5和O3两者占比超过85%,4月和10月首要污染物的占比发生转折;O3浓度逐年上升,其他污染物浓度不同程度下降。(2)PM2.5、PM10、NO2浓度的季(月)变化相似,由高到低为:冬季、秋季、春季、夏季,冬季显著高于其他季节;1—7月下降,8月上升,9月下降,10—12月上升;PM2.5、PM10浓度1月最大,NO2浓度12月最大。O3浓度由高到低为:夏季、春季、秋季、冬季,9月浓度最高。各污染物浓度日变化特征明显。(3)空间分布上,PM2.5、PM10...  相似文献   

2.
为全面认识减排过程中华北平原城市大气复合型污染变化特征,本文利用最近6年(2017—2022)山东省德州市环境-气象监测资料,分析关键大气复合污染物PM2.5和O3的季节特征及其相互作用,探究东亚季风气候背景下冬夏季PM2.5和O3的相互作用机理.德州市近6年城市环境PM2.5和O3超标率分别为20.22%和23.56%,O3污染凸显.环境大气PM2.5和O3在夏季表现为显著正相关,相关系数高达0.53(p<0.01),而冬季则呈显著负相关,相关系数为-0.30 (p<0.01),两者具有明显“夏正冬负”的相反季节变化特征.环境气象机理分析表明,夏季高温及强太阳辐射的气象条件促进光化学反应生成O3,加大大气氧化性的增强二次颗粒物生成,导致PM2.5浓度升高;冬季低温及弱太阳辐射气象背景下,高浓度PM2.5的局地累积...  相似文献   

3.
在紧邻天津机场跑道的点位对机场区域大气常规污染物开展连续监测,应用广义加性模型(GAM),针对2017年3月1日~2018年2月28日间的NO2及O3,识别其影响因子,并确定因子贡献率.选取因子包括环境因子(SO2、NO、NO2、O3、CO、PM2.5、PM10、前一小时NO2/O3浓度),气象因子(风向、风速、温度、露点温度、修正海压)及航空活动因子(起飞、着陆).结果显示:机场区域NO2日均值为17.6~123.6μg/m3,超标天数共计38d,占比约13%;O3日均值为1.0~276.1μg/m3,超标天数占比26%,污染主要集中在夏季;环境因子是主要影响因子,累积贡献率在56%~89%;航空活动作为区域重要污染源,对大气NO2、O3存在一定影响,最高贡献率可达20%;气象因子相对贡献较低.全部GAM的Adj-R2为0.85~0.96,筛选的影响因子能够有效解释区域环境空气污染物浓度的变化.  相似文献   

4.
采用统计学方法、Pearson相关系数法和线性回归法研究分析了2018年吉林市大气污染物SO2、NO2、PM10、PM2.5、CO和O3浓度的变化特征、污染物浓度之间的相关性以及污染物与气象因素的相关性。结果表明:1)吉林市大气环境中O3、PM10和PM2.5日均值超标率分别为1.06%、3.27%和7.14%,颗粒物、O3及其前体物质为治理重点;CO、SO2、NO2、PM10和PM2.5春、冬季污染较重,夏季污染最轻;大气环境中的污染物浓度随季节、时刻及人类活动发生周期性变化;2)PM10和PM2.5、PM2.5和CO、NO2和CO浓度之间高度相关(相关系数r均>0.8),并建立了其预测线性模型;3)污染物(O3除外)浓度与温度、风速和混合层高度呈负相关,与气压呈正相关;降水对SO2、PM10和PM2.5浓度具有一定的削减作用,降水后其浓度减少的次数占总降水次数的68.75%、84.38%和78.13%;吉林市污染最严重的颗粒物受气象因素中混合层高度、风速和降水影响较大。该研究成果可为日后吉林市开展大气污染治理、区域大气环境容量测算、空气污染潜势预报等研究提供参考。  相似文献   

5.
利用2015~2019年环境监测数据,对比分析华北地区平原城市保定市和山区城市张家口市PM2.5和O3变化和相关关系.结果表明:保定市PM2.5夏低冬高,O3夏高冬低,日变化为午后单峰型,而张家口市PM2.5浓度低,日变化幅度较弱,冬季O3日变化为午后峰值和凌晨5:00左右弱峰值双峰型.张家口市冬季全天及春夏秋季夜间O3浓度显著高于保定市,甚至夏季出现夜间O3超标异常,最高浓度达到202μg/m3,反映了平原城市和清洁山区大气物理化学过程变化的影响.PM2.5和O3在4~9月为正相关,11~3月为负相关;保定市PM2.5-O3相关系数日变化呈单峰型,张家口市为双峰型变化,凌晨和午后各有一峰值,华北地区平原污染区和高山相对清洁区,大气复合污染物PM2.5和O3作用关系的日变化及季节特征具有明显差异.  相似文献   

6.
文章系统分析攀枝花市大气污染物时间、空间、季节变化趋势,揭示大气污染物特征及气象因子关系。基于2014-2020年攀枝花市环境空气质量监测数据,采用统计学的方法分析了2014-2020年攀枝花市6种污染物(PM2.5、PM10、NO2、CO、SO2、O3-8 h)的时空变化特征;通过典型相关分析方法,研究了气象因子(气温、湿度、风速、降雨量、气压)对大气污染物浓度的影响。结果表明:从时间来看,攀枝花市PM2.5、PM10、CO、SO2近年来呈下降趋势,NO2浓度呈上升趋势,但均不显著;O3-8 h浓度呈显著上升趋势。从季节来看,PM2.5和PM10浓度表现为冬季>春季>秋季>夏季,SO2浓度四季变化不显著,NO2浓度和CO浓度大小变化顺序为冬季>秋季>春...  相似文献   

7.
为研究2020年初新冠疫情严控措施对南京市空气质量的影响,选取1月25日~2月10日(疫情严控期)南京及周边省会城市空气质量监测数据,与5a同期数据进行对比,分析时空分布特征.结果表明,疫情停工期间,降水量同比下降,大气扩散条件为近5a较差水平,但除O3浓度不降反升外,其他主要污染物PM2.5、PM10、SO2、NO2和CO浓度均达近5a最低值,分别为36,44,5,22μg/m3和1.1mg/m3.通过推算疫情停工期间本地减排措施的“净环境效益”,严控使得PM2.5、PM10、SO2、NO2和CO分别下降了41.7%、45.3%、14.3%、43.5%、18.2%,O3浓度上升了4.8%.从空间上分析,南京市SO2浓度及其同比降幅在长三角省会城市内排名第1,其他污染物改善情况处于中等水平.从日变化可知,PM2.5和PM10日变化由双峰型变为单峰型,夜间未出现次峰值.O3夜间浓度明显升高,原因是交通源的大幅削减使NO对O3的滴定反应降低,而白天O3浓度峰值取决于VOCs和NOx的减排比例.  相似文献   

8.
为研究南京夏季大气复合污染的特征,2016年8月15日~9月15日期间开展了强化观测实验,本文利用仙林、鼓楼80m楼顶2个站点的强化观测资料,结合草场门常规监测资料,统计分析了南京不同地区夏季O3和颗粒物(PM2.5、PM10)的浓度特征和相关性,以及郊区水溶性离子与其气态前体物的转化率变化特征.研究表明:3个站点O3平均小时浓度为100.3μg/m3.PM2.5和PM10浓度分别为41.1和67.8μg/m3,郊区夜间存在颗粒物浓度高值.SO42-、NO3-、NH4+浓度总和占PM2.5浓度的比值达到61%,OC(有机碳)/EC(元素碳)比值范围为0.8~4.0,日均值超过2.0的天数占77%,城、郊均存在二次污染.白天O3与颗粒物(PM2.5)浓度呈显著正相关变化,硫转化率(SOR)、氮转化率(NOR)分别与O3浓度、湿度显著正相关.HONO主要在夜间积累,HCl和HNO3浓度峰值出现在下午.与其它无机盐相比,NH4+在总氨中所占比例明显偏低,大气中的氨主要以气态NH3存在.观测期间O3污染较重,O3与颗粒物的正相关关系显著,化学反应在颗粒物积累过程中具有重要贡献,此外还可能存在城区向郊区的污染输送.  相似文献   

9.
基于2014~2017年江苏省13个市的PM2.5浓度和O3_8h_max数据,探讨了其时空分布特征.在此基础上,研究了日益升高的近地层O3浓度与气象因子的关系.结果表明:江苏省2014~2017年PM2.5浓度整体上呈下降的趋势,年均浓度减少率为6.06μg/m3,而O3_8h_max整体上呈上升趋势,年均浓度增长率为3.84μg/m3.总体上,PM2.5浓度呈现冬春高、夏秋低的V型月变化特征,O3_8h_max则基本呈现不规则的M型,在5月份达到峰值后逐渐降低,又在7~9月份保持平缓,而后又逐渐下降.空间上,江苏省PM2.5浓度呈现"内陆高,沿海低"的状态,而O3_8h_max却呈现"沿海高,内陆低"的状态.与气象因子的相关性表明,O3浓度与气温和太阳辐射呈正相关关系,与相对湿度呈负相关关系,太阳辐射对O3浓度的影响最大,其次是温度和相对湿度.当日平均气温在20~30℃、相对湿度在50%~70%、太阳辐射强度高于150w/m2时O3浓度容易出现超标.  相似文献   

10.
利用2017~2019年夏、冬季天津市大气污染物监测和气象观测数据,基于天津气象铁塔垂直观测,针对大气垂直扩散条件对PM2.5和O3的影响进行研究.结果显示:近地面PM2.5浓度随高度的升高而下降,O3浓度则随高度的升高而上升,受大气垂直扩散条件的季节和日变化影响,冬季,地面与120m PM2.5质量浓度相关明显,与200m PM2.5质量浓度无明显相关.夏季,120m和200m PM2.5质量浓度相关系数为0.72,午后通常出现120m和200m PM2.5质量浓度高于地面的情况.夏季,不同高度O3浓度差异小于冬季,地面与120m高度O3浓度接近.以大气稳定度、逆温强度和气温递减率作为大气垂直扩散指标,对地面PM2.5和O3垂直分布具有指示作用.冬季,TKE与PM2.5质量浓度相关系数为到-0.65,夏季,TKE与ΔPM2.5相关系数为-0.39.夏、冬季TKE与地面O3浓度的相关系数分别为0.46和0.53,与ΔO3的相关系数分别为0.73和0.70.弱下沉运动对地面O3浓度影响较强,40m高度垂直运动速度与地面O3浓度的相关系数在冬、夏季分别为-0.54和-0.61.对冬季典型PM2.5重污染过程的分析发现,雾霾的生消维持和PM2.5浓度的变化与大气稳定度、气温垂直递减率和TKE的变化有直接关系.对夏季典型O3污染过程的分析发现,近地面的O3污染的形成与有利光化学反应的气象条件密切相关,同时,垂直向下输送和有利垂直扩散条件对O3污染的形成和爆发影响明显.  相似文献   

11.
探讨兰州市空气污染对不同性别和年龄的儿童呼吸疾病就诊人数的影响以及季节性变化.通过收集2013~2017年兰州市空气污染物PM2.5、PM10、SO2、NO2、CO和O38h浓度数据、气象数据及3家三甲医院儿童呼吸疾病门诊资料,采用广义相加模型(GAM)控制星期几效应、气象因素、假期效应等混杂因素,分析空气污染物浓度与儿童呼吸系统疾病日门诊量的关系及滞后效应.研究期间,兰州市3家三甲医院儿童呼吸系统疾病日门诊量平均为387人次,范围1~1413人次.单污染物模型结果显示,PM2.5、NO2、SO2、CO均在累积滞后一天(lag01)时效应量达到最大值,其浓度每增加10μg/m3(CO单位为1mg/m3),儿童呼吸系统疾病就诊人次的超额危险度(ER)及95%可信区间(95% CI)分别为0.245%(95% CI:0.127%~0.363%),0.568%(95% CI:0.327%~0.808%),1.661%(95% CI:1.022%~2.302%),2.245%(95% CI:1.610%~2.883%);PM10和O38h在各滞后天数均无统计学意义.对不同性别、年龄、季节分析发现,性别分层中PM2.5对女童的影响略高于男童,NO2、SO2和CO的影响男童略高于女童;年龄分层发现PM2.5、NO2和CO的影响6~14岁组大于0~5岁组,SO2的影响0~5岁组大于6~14岁组;季节分层中PM2.5、NO2、SO2和CO对门诊量的影响只在冬季有意义,PM10和O38h在各个季节均无意义.双污染物模型结果显示,分别调整其他5种污染物后,PM10和O38h对儿童呼吸系统疾病门诊量的增加均无统计学意义;调整PM10和O38h后,其他污染物呼吸系统疾病门诊量的增加均有统计学意义.兰州空气污染物(PM2.5、NO2、SO2、CO)与呼吸系统疾病门诊量密切相关,并且SO2和CO浓度增加更易增加儿童呼吸系统疾病的发病风险.性别、年龄和季节对空气污染物和呼吸系统疾病门诊就诊人次的关系有影响.  相似文献   

12.
分析了长江三角洲地区电厂排放的基本特征并利用WRF-Chem模拟冬季大气污染状况,研究了冬季电厂排放主要污染物的特征及其对空气质量的影响,结果显示,长三角电厂排放的主要大气污染物为SO2、NOx及PM2.5,2010年排放量可分别达到826.8、1475.6和137.3Gg,分别占长三角地区人为源总排放量的34%、38%和14%.冬季主要大气污染物(SO2、NO2、PM2.5)浓度高值区分布在南京-上海,杭州-宁波一带.电厂对SO2浓度贡献量(率)的空间分布与SO2排放的空间分布较为一致,而NO2、PM2.5,其贡献量(率)的高值区主要分布在安徽、浙江和江西的交界处以及浙江省的东海岸.相对SO2、NO2,电厂对PM2.5贡献量(率)较低,各地均在20μg/m3(15%)以下.污染时期电厂排放对模拟的PM2.5和SO2贡献率(6.9%、34.2%)较清洁时期(4.9%、20.7%)大,而对于NO2,清洁和污染时期的贡献量没有明显差别,均在10μg/m3左右.冬季气温低、风速小及边界层高度低的特征不利于低层污染物的扩散,易导致重污染事件的发生.  相似文献   

13.
通过2013~2017年徐州市环境监测资料分析季风影响下主要大气复合污染物PM2.5和O3的相关性,并基于气象观测资料进一步探究PM2.5和O3相互作用机制的季节变化特征.结果表明:夏季风季节,PM2.5和O3呈正相关,相关系数高达0.56;冬季风季节,PM2.5和O3呈负相关,相关系数为-0.34,均通过了99%的置信检验,表明徐州市PM2.5和O3相互作用呈现相反的季节变化.夏季风季节,太阳辐射强,气温较高,大气氧化性较强,O3主导大气氧化性,大气氧化性通过促进二次颗粒物生成使得PM2.5浓度升高,夏季风季节以O3对PM2.5的促进作用主导城市大气复合污染变化;冬季风季节,太阳辐射弱,气温较低,大气氧化性较弱,高浓度的PM2.5削弱太阳辐射抑制大气光化学,导致O3生成率降低,冬季风季节以PM2.5对O3的抑制作用主导城市大气复合污染变化.  相似文献   

14.
为了加强对长江三角洲地区大气污染分布特征和输送规律的认识,利用移动车载设备开展了不定期的走航观测,重点研究了2016-2018年冬季灰霾污染和春季光化学污染条件下长江三角洲地区的大气污染特征.结果表明,走航观测期间长江三角洲地区PM2.5日均浓度为60~122 μg/m3,东部的常州、无锡一带,西部的合肥、芜湖地区,北部蚌埠、滁州一带,南部湖州、杭州地区的PM2.5浓度较高,比其他地区高出20%~40%.O3日均浓度水平为9~52 μg/m3,苏州、盐城、宣城与湖州地区浓度相对较高.运用FLEXPART_WRF模式,结合PM2.5排放清单,分析了走航观测期间长江三角洲地区及沿线城市PM2.5的潜在来源.结果发现,东风条件下,南通及上海地区为PM2.5的潜在源区,北风条件下,连云港、盐城等地区贡献较大.运用FLEXPART前向轨迹计算模块,对一次污染个例过程进行了模拟,并利用走航观测结果进行了验证,发现模拟结果与走航观测结果的相关系数达到0.9.可见,长江三角洲地区存在区域性的PM2.5和O3污染,走航观测结合轨迹分析是追踪污染气团输送的有效手段.  相似文献   

15.
为研究邯郸市PM2.5中碳组分的污染特征及其来源,于2017年4~12月采集PM2.5样品,用热光反射法(TOR)分析PM2.5中有机碳(OC)和元素碳(EC)的质量浓度.结果表明:邯郸市PM2.5和总碳气溶胶(TCA)质量浓度的年均值分别为(88.87±58.89)μg/m3和(31.45±23.35)μg/m3,PM2.5质量浓度超标率为50%,TCA/PM2.5比率的年均值为(38.23%±14.61%),表明邯郸市碳组分污染严重.冬季PM2.5中TCA质量浓度均值为(68.06±23.77)μg/m3,TCA/PM2.5比率的均值为(46.86%±10.07%),OC(37.09±13.05)μg/m3和EC(8.72±3.78)μg/m3浓度明显高于其它季节,表明冬季碳组分污染较为严重.各季节OC/EC比值均大于2,表明邯郸市全年均受二次有机碳(SOC)的污染;OC、EC及SOC与SO2、NO2呈显著正相关,与O3呈显著负相关,尤其是与NO2相关关系最强,说明邯郸市碳质气溶胶可能受到机动车尾气排放的影响.对8种碳组分进行主成分分析,发现道路扬尘、燃煤排放和机动车尾气是邯郸市PM2.5中OC和EC的主要贡献源.  相似文献   

16.
利用成都市2014~2016年逐日呼吸系统疾病和心脑血管疾病死亡资料、同期气象资料和PM2.5日均浓度和每日臭氧最大8h平均浓度(O3)资料,采用分布滞后模型以及广义相加模型中的独立效应模型、非参数二元响应模型和温度分层模型探究了成都市气温、PM2.5和O3单效应,以及气温与PM2.5(或O3)交互作用对当地呼吸和心脑血管疾病死亡人数的影响.单效应分析结果表明,气温与两种疾病死亡人数的累计暴露-反应关系均呈反“J”型分布,最适温度在22.2℃,该温度对应的疾病死亡人数最少;累积滞后1d的PM2.5(或O3)对应的健康风险最大,此时,PM2.5和O3浓度每升高10μg/m3,呼吸系统疾病死亡风险分别增加0.58%和0.54%,心脑血管疾病死亡风险分别增加0.35%和0.66%.分季节研究结果表明,PM2.5对两种疾病死亡影响的健康风险冬季最高,而O3的健康风险在秋季最显著.交互作用的研究结果表明,高温与高浓度的PM2.5(或O3)对疾病死亡的影响存在协同放大效应,当气温高于22.2℃时,PM2.5和O3浓度每升高10μg/m3,对应的呼吸系统疾病死亡风险分别增加2.30%和1.14%,心脑血管疾病死亡风险分别增加1.09%和1.03%.研究结果提示O3对人群健康的影响也不容忽视,应该引起足够的重视.  相似文献   

17.
为进一步了解武汉市大气污染时空分布特征,对2017—2020年武汉市主要大气污染物(PM2.5、PM10、SO2、CO、NO2和O3)进行了空间插值分析、时间变化分析以及与气象要素的相关性分析。结果表明:武汉市近4年环境空气质量达标率为72.98%。PM2.5、PM10、SO2、CO和NO2具有“冬高夏低”的“V”形特征,O3呈“夏高冬低”的变化趋势。武汉市年均质量浓度超标的大气污染物主要有PM2.5和PM10,但其年均质量浓度均呈下降趋势,而O3是年均质量浓度唯一处于上升状态的大气污染物,今后应重点关注颗粒物与臭氧污染。PM2.5、PM10、SO2、CO和NO2主要集中在武昌区、蔡甸区、青山区、江汉区、江岸区,而O<...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号