首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2014年在吉林市设立7个大气PM_(2.5)采样点,分采暖季和非采暖季分别采样分析了吉林市城区大气颗粒物污染特征和可能来源。结果表明:吉林市大气颗粒物以PM_(2.5)为主,PM_(2.5)年均值65μg/m3,超过国家二级标准限值86%,PM_(2.5)/PM10的年平均值为61%;PM_(2.5)中,休闲生活区各个时间段金属元素浓度相对较低,工业混合区浓度较高;非金属离子SO2-4、NH+4、NO-3、Cl-是PM_(2.5)水溶性离子的主要成份,其和占PM_(2.5)质量的13.31%,在采暖期浓度质量全部高于非采暖期;采暖期OC和EC来源基本相同,来源于机动车尾气、燃煤和生物质燃烧等,在非采暖期OC和EC来源差异性较大,主要来源于机动车尾气和工业燃煤等。  相似文献   

2.
于2016年4月、7月、10月和2017年1月利用2台中流量分别在徐州市不同功能区,即生活区、工业区和旅游区采样大气中的细颗粒物(PM_(2.5))样品,测定PM_(2.5)质量浓度及其化学组分(含碳组分、水溶性离子和无机元素),结合化学质量平衡模型(CMB),对PM_(2.5)进行来源解析。研究结果表明:徐州市PM_(2.5)污染的年平均浓度维持在65μg/m~3左右,超过国家环境空气质量标准(GB3095-2012)二级标准(35μg/m3)的0.95倍。冬季全市的PM_(2.5)平均浓度最高,为103.6μg/m~3。根据CMB模型结果,全年PM_(2.5)来源解析,煤烟尘的分担率最高,达23.4%;其次是硫酸盐,达20.5%;硝酸盐的分担率占第三位,为18%,机动车尾气尘和城市扬尘分别为12.3%和11.4%,其他各源类的分担率均小于5%。  相似文献   

3.
长沙市秋季PM2.5中水溶性离子特征及其来源解析   总被引:3,自引:0,他引:3  
为探究长沙市秋季PM_(2.5)水溶性无机离子组成特征和来源,于2017年9月~11月在长沙城区连续采集大气颗粒物PM_(2.5)样品共85个,并用离子色谱仪分析样品中的9种水溶性无机离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)。结果表明,长沙市秋季PM_(2.5)质量浓度的平均值为56. 3±39. 6μg/m~3,总水溶性无机离子质量浓度平均值为29. 47±19. 10μg/m~3,占PM_(2.5)的52. 3%,其中NO_3~-、SO_4~(2-)、NH_4~+是PM_(2.5)中最主要的离子成分。霾天PM_(2.5)平均质量浓度约是清洁天的3倍,NO_3~-、NH_4~+、K~+、Cl~-四种离子的快速增长对霾天PM_(2.5)中离子的贡献最大。由PMF模型解析可知,秋季大气PM_(2.5)主要来源于机动车尾气和燃煤源,而扬尘、生物质燃烧源、工业源和海盐的贡献不到30%。长沙市秋季大气污染呈现机动车尾气等移动源和燃煤等固定源的混合型污染为主。  相似文献   

4.
张伟  姬亚芹  张军  张蕾  王伟  王士宝 《环境科学》2017,38(12):4951-4957
为了解辽宁省典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,分别于2014年和2016年采集了鞍山市和盘锦市道路扬尘样品,利用再悬浮采样器将其悬浮到滤膜上,用离子色谱仪分析了其中的水溶性无机离子组分,分别用相关分析法和比值法分析了其污染特征,用主成分法初步解析了其主要污染源.结果表明,盘锦市和鞍山市8种水溶性无机离子分别占道路扬尘PM_(2.5)的5.83%±3.34%和5.84%±1.15%.盘锦市NH_4~+与SO_4~(2-)和NO_3~-的结合方式主要为(NH_4)2SO_4和NH_4NO_3,鞍山市NH_4~+与SO_4~(2-)和NO_3~-的主要结合方式为NH_4HSO_4和NH_4NO_3.盘锦市和鞍山市道路扬尘PM_(2.5)中NO_3~-/SO_4~(2-)的均值分别为0.52±0.55和0.46±0.13,表明固定源(燃煤)对其道路扬尘PM_(2.5)的影响较显著.盘锦市道路扬尘PM_(2.5)主要来源于生物质燃烧源、海盐粒子、建筑水泥尘和机动车尾气;鞍山市道路扬尘PM_(2.5)主要来源于燃煤源、生物质燃烧源、海盐粒子和钢铁冶炼尘.  相似文献   

5.
为探讨包头城区大气PM_(2.5)污染特征及主要来源,在包头城区设立4个采样点,于2015年12月-2016年9月采集大气PM_(2.5)样品,共获得160个有效样品,分析了PM_(2.5)及其无机元素、水溶性离子、元素碳(EC)和有机碳(OC)的质量浓度和污染特征。同时采集了包头城区土壤风沙尘、建筑施工尘、道路扬尘、煤炭燃烧尘、装备制造尘和金属冶炼尘等6类污染源,建立了包头市大气PM_(2.5)排放源成分谱。应用非负主成分回归化学质量平衡(NCPCRCMB)模型分析了PM_(2.5)来源。结果表明:观测期间包头市PM_(2.5)的年均浓度为80.58μg/m3,是中国《环境空气质量标准》(GB 3095-2012)年均PM_(2.5)二级标准限值的2.3倍;大气PM_(2.5)的季节变化特征为春、夏、秋三季低冬季高,且冬季显著高于其他三季;大气PM_(2.5)主要来源于二次离子和道路扬尘(贡献率分别为34.37%和15.98%),其他污染源贡献率相对较小。  相似文献   

6.
于2015年春、夏季,在天津市选取4条不同等级道路进行路边空气颗粒物(PM_(2.5)和PM_(10))采集,并分析其中16种无机元素.结果表明,春季PM_(2.5)和PM_(10)的平均浓度显著高于夏季.路边环境中PM_(2.5)/PM_(10)低于非路边环境中空气颗粒物比值,且次干道和快速路分别在PM_(2.5)和PM_(10)中污染最严重.元素浓度分析显示,PM_(2.5)和PM_(10)中Si、Al、Ca等地壳元素浓度最高,次干道和快速路受人为元素影响较大,外环路所受影响较小;富集因子(PM_(2.5)和PM_(10))分析结果显示,Pb、Zn、Cu、Sb、Sn和Cd的EF10,是路边环境中富集程度较高的元素.通过Kruskal-Wallis H检验,PM_(2.5)中各元素富集因子在4条道路上存在显著性差异,次干道受机动车污染较严重.PM_(2.5)和PM_(10)中因子分析结果有一定差异,PM_(2.5)分析结果显示采样期间该区域主要污染源有开放源(土壤尘、扬尘、道路尘及建筑尘)、机动车排放源(尾气和非尾气源)、燃烧源和工业源,其中机动车排放源在人为源污染中占比最高.  相似文献   

7.
为了明确泰安市环境受体PM_(2.5)的污染特征和主要来源,该研究于2015年春、冬季在泰安市区采集了环境受体中PM_(2.5)样品,分析了PM_(2.5)及其化学组分特征,建立了源化学成分谱,基于化学质量平衡(CMB)模型对泰安市环境受体PM_(2.5)进行了来源解析,利用后轨迹分析了PM_(2.5)的区域传输路径。结果表明:PM_(2.5)及其化学组分与污染源贡献都具有明显的季节特征。春季,机动车尘是PM_(2.5)的首要贡献源类,分担率为19.11%;其次为二次硫酸盐、扬尘和煤烟尘,分担率分别为18.07%、16.08%、10.53%。冬季,煤烟尘为首要的污染源类,分担率为16.32%;机动车源和城市扬尘对PM_(2.5)的分担率比春季低,分别为11.99%和13.42%。后轨迹分析表明,春季PM_(2.5)可能受来自内蒙古等地的土壤风沙尘的长距离运输影响;冬天可能受来自蒙古、河北、山东周边等地燃煤源的长距离运输的影响。  相似文献   

8.
海口市PM_(2.5)和PM_(10)来源解析   总被引:2,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

9.
为探讨兰州市大气细颗粒物化学组成及其污染来源,对兰州市大气PM_(2.5)中水溶性离子、无机元素以及OC和EC进行了研究。结果表明:PM_(2.5)浓度及其化学组成具有明显的季节变化特征,PM_(2.5)浓度为冬季>春季沙尘>春季>夏季;水溶性离子以SO_4~(2-)、NH_4~+和NO_3~-浓度最高,占总水溶性离子的78.7%~87.1%,表明该地区的二次污染较为严重,主成分分析表明水溶性离子主要来源于燃烧源和土壤源;无机元素以Zn、Pb和Ba浓度最高,主要来源于燃煤和机动车源;OC冬季浓度最高,而EC夏季浓度最高,并形成了较严重的二次有机碳污染。  相似文献   

10.
为研究华北平原细颗粒物(PM_(2.5))的组成特征及来源,基于CAREBEIJING-NCP 2014大型观测项目,于2014年夏季在北京城区和河北郊区望都进行了同步观测,分析了两地PM_(2.5)中水溶性离子、元素、有机碳(OC)和元素碳(EC).结果表明,采样期间望都站点PM_(2.5)平均质量浓度为(71.47±38.04)μg/m~3,高于北京城区(51.44±30.94)μg/m~3,PM_(2.5)中各化学组分浓度也均表现为望都高于北京,二次无机离子(硫酸盐、硝酸盐及铵盐)在两地PM_(2.5)中占比最高,约为60%.PM_(2.5)中多种元素浓度也表现为望都均高于北京,但富集因子分析表明,北京市PM_(2.5)中元素富集因子更高.来源分析表明,两地PM_(2.5)中元素均受到工业源和尘源的影响;此外,观测期间两地均受到生物质燃烧影响.后向轨迹分析表明,当到达两地的气团来向相同时,北京与望都PM_(2.5)浓度水平和化学组成呈现相似性,但当气团来向不同时,两地污染特征差异较大.  相似文献   

11.
为研究长沙市城南地区PM_(2.5)中微量元素的污染特征,采用电感耦合等离子质谱仪(ICP-AES)和离子色谱分析仪(IC)分别对大气颗粒气溶胶中无机元素及大气溶胶中水溶性无机离子进行分析测定。通过研究得知,长沙市各元素总体平均浓度从高到低依次为:CaSFeAlCuMgZnHgCrPbMnAsTiCdNi。其中S、Ca、Fe的浓度在1 000 ng/m~3以上,Al、Cu、Mg、Zn、Hg、Cr和Pb在1 000与100 ng/m~3之间,Mn、As、Cd、Ti、Ni等其他元素在100 ng/m~3以下。长沙市的PM_(2.5)中无机金属元素污染主要来源采矿业、燃煤及机动车燃油。长沙市PM_(2.5)中水溶性无机离子主要为3种无机离子:SO_4~(2-)、NH_4~+以及NO_3~-,长沙市PM_(2.5)中SO_4~(2-)、NH_4~+以及NO_3~-3种离子总和占PM_(2.5)的17.77%~33.03%。通过比较长沙市NO_3~-/SO_4~(2-)的平均比值,长沙市内空气污染主要为燃煤及机动车燃油尾气的复合型污染。  相似文献   

12.
本文通过对2012年3月至2013年3月宝鸡市大气PM_(2.5)中各个水溶性无机离子组分的质量浓度进行研究,获得了水溶性离子的时间变化特征,并结合主成分分析方法讨论了不同离子的来源。结果显示,宝鸡市PM_(2.5)中水溶性离子主要由、和组成,分别占总水溶性离子质量浓度的40.47%、30.75%和15.07%;PM_(2.5)整体偏酸性。/比值随API指数的升高而增大,当空气质量较好时PM_(2.5)中硫酸盐居多,而随着空气污染发生硝酸盐逐渐增多并占优势。主成分分析结果表明PM_(2.5)中水溶性离子的主要来源有二次气溶胶、生物质燃烧和土壤尘。  相似文献   

13.
重庆市主城区大气细颗粒物污染特征与来源解析   总被引:1,自引:0,他引:1  
重庆市主城区大气细颗粒物(PM_(2.5))浓度从1990s的100μg·m~(-3)下降至当前的约70μg·m~(-3),但仍高于环境标准限值.为探讨重庆市主城区PM_(2.5)化学组成与来源特征,于2012—2013年在渝北区大气超级站利用四通道采样仪连续采集了颗粒物样品,分析了其中水溶性离子、碳质组分和无机元素含量.采样期间,重庆市主城区大气PM_(10)和PM_(2.5)的年日均浓度分别为103.9和75.3μg·m~(-3),扩散条件不利的冬季,细颗粒物污染较为严重.受静稳天气影响的1月和2月,受沙尘影响的3月,及二次转化显著的6月是重庆市细颗粒物污染较重的月份.重庆市PM_(2.5)组成以有机物(OM,30.8%)为主,其次为硫酸盐(SO_4~(2-),23.0%)、硝酸盐(NO_3~-,11.7%)、铵盐(NH_4~+,10.9%)、地壳物质(Soil,8.2%)、元素碳(EC,5.2%)、K~+(1.1%)、Cl~-(1.0%)和微量元素(Trace,0.6%).较高的SO_4~(2-)浓度和逐步上升的[NO_3~-]/[SO_4~(2-)]比值反映了重庆市燃煤污染较重,同时机动车污染比例逐步增加.采用主因子分析/绝对主因子得分法解析了重庆城区细颗粒物5类主要来源是:二次粒子(41.7%)、燃煤(15.6%)、建筑/道路尘(12.4%)、土壤尘(11.0%)和工业尘(10.4%),通过各污染源季节变化及与其他结果对比,该源解析结果能够较可靠反映重庆市细颗粒物的来源信息.  相似文献   

14.
2014年7月采集鞍山市大气中PM2.5样品,采用IMPROVE-TOR方法准确测量了样品中的8个碳组分,研究了鞍山城区夏季PM2.5及其载带的碳组分的污染特征。鞍山市夏季PM2.5浓度为(53.4±18.0)μg/m3,有机碳(OC)、元素碳(EC)和总碳(TC)占PM2.5的比例分别为(11.89±3.86)%、(4.79±1.31)%和(16.68±5.02)%,表明碳是鞍山城区夏季PM2.5中的重要成分。PM2.5中OC、EC浓度显著相关,R=0.715;另外,全市OC/EC的平均值为2.49±0.43,所有监测点位OC/EC的平均值均2,表明PM2.5中二次有机碳(SOC)对OC有贡献,从而说明OC、EC的来源相同。8个碳组分(OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC)的丰度研究显示,鞍山市城区夏季PM2.5中碳主要来源于机动车尾气尘、道路尘和燃煤尘。  相似文献   

15.
基于广安市2017年6月-2018年5月逐日平均国控站点空气质量监测数据,该文对广安市PM_(2.5)组成特征及污染贡献源进行解析。结果表明,监测期间广安市PM_(2.5)主要成分为元素碳(30%)、有机碳(30%)和混合碳(12%);颗粒物首要污染源为燃煤(22%),工艺过程源(19%)、扬尘源(18%)和二次源(18%)贡献率也较高,机动车、生物质和其他源贡献率都较低;工业源(工艺过程和燃煤)、扬尘源和机动车为广安市主要污染来源,不同季节污染源贡献率有所不同,春季扬尘源贡献突出,秋季主要表现为扬尘源、工业源(工艺过程和燃煤)和机动车,夏季和冬季工业源(工艺过程和燃煤)贡献率突出,其次为扬尘源;工业源(工艺过程和燃煤)、机动车、扬尘源、生物质燃烧是春季PM_(2.5)浓度上升的主要原因;夏季则是工业源(工艺过程和燃煤)、机动车、扬尘源;秋季机动车是导致PM_(2.5)升高的主要原因;冬季工业源(工艺过程和燃煤)、扬尘源、生物质燃烧是PM_(2.5)浓度上升的主要原因;污染期间应重点管控工业源(工艺过程和燃煤)、扬尘源和机动车,春季和冬季还应加强生物质燃烧源控制。  相似文献   

16.
王成辉  闫琨  韩新宇  施择  毕丽玫  向峰  宁平  史建武 《环境科学》2017,38(12):4968-4975
为研究高原地区机动车尾气排放特征,选取昆明市草海隧道内大气PM_(2.5)为研究对象,并对样品中的水溶性离子、碳组分、多环芳烃、无机元素进行分析.结果表明,隧道内PM_(2.5)质量浓度为225.65~312.84μg·m~(-3),是同期环境大气中PM_(2.5)浓度的11~14倍,PM_(2.5)中碳组分所占比重最高,约占总质量浓度的35.73%,其次无机元素占21.78%,离子组分在4.79%~5.52%之间,含量最低的是多环芳烃,占0.25%~0.32%;离子组分中Ca~(2+)和SO_4~(2-)含量较高,占总离子浓度的77.78%~80.17%,显示为地壳来源,其次是NH_4~+、NO_3~-的浓度也相对较高,主要来自机动车尾气源;草海隧道PM_(2.5)中以分子量相对较大、不易挥发的4、6环PAHs为主,机动车尾气对PM_(2.5)中多环芳烃的贡献十分显著,毒性最强的Ba P浓度是国家规定浓度限值的23~29倍,高原草海隧道大气中存在PM_(2.5)暴露健康风险;隧道大气PM_(2.5)中元素由PCA分析显示机动车尾气和道路扬尘来源占比约61.64%,其次机械磨损排放源占比约为17.49%,最后为轮胎磨损排放源,占比为9.11%;云贵高原大气低压低氧条件下,机动车发动机燃料不完全燃烧几率较高,导致机动车尾气PM_(2.5)中的OC以及PAHs排放量增加.  相似文献   

17.
为探讨汉中市秋季PM_(2.5)昼夜变化特征。于2015年9月7日至9月17日利用中流量大气颗粒物采样仪在汉中市三个不同站点分昼夜采集PM_(2.5)滤膜样品,并分别利用热光碳分析仪(DRI—2011)和离子色谱(Dionex—600)分析PM_(2.5)中碳组分和水溶性离子组分,主要探讨PM_(2.5)及其碳组分和水溶性离子昼夜变化特征。结果显示:汉中秋季PM_(2.5)浓度低于国家空气质量一级标准;PM_(2.5)中主要化学组分包括SNA (硫酸盐、硝酸盐、铵盐)和有机类物质,白天和夜间占比分别达到32.3%、39.6%和28.9%、39.6%; PM_(2.5)颗粒物呈酸性。除SO_4~(2-)、Mg~(2+)和Ca~(2+)之外,PM_(2.5)及其化学组分均呈现夜间浓度高于白天的特征。离子的赋存形态分析表明:SO_4~(2-)更多以(NH_4~+)_2SO_4~(2-)的形式存在于PM_(2.5)中。本文相关结果可为地方环保政策的制定提供参考和基础数据。  相似文献   

18.
从济南市机动车年检线上利用稀释通道方法采集了小型汽油车、中型汽油车、中型柴油车和大型柴油车4类机动车排气载带PM_(2.5),分析测量了样品中水溶性离子、金属元素、有机C(OC)和元素C(EC)的含量,明确了济南市机动车排气的化学组分特征,得到了济南市机动车排气污染现状以及排放特征.计算了4类机动车排气载带颗粒物的OC/EC值,小型汽油车、中型汽油车、中型柴油车和大型柴油车排气载带颗粒物中OC/EC值分别为15.79、4.34、1.93和0.39,其中小型汽油车、中型汽油车的OC/EC值均大于2,表明汽油车的尾气大于柴油车的尾气污染.而小型汽油车OC/EC值高达15.79,说明小型汽油车尾气中存在严重的二次污染.金属元素特征分析表明Ti、Mn、Fe、Al在济南市机动车尾气颗粒物PM_(2.5)中含量较高,尤其是Mn和Ti,因此,这4种金属元素可作为济南市机动车尾气源的标志元素.PMF模型解析表明,机动车排气源对济南市环境空气PM_(2.5)的贡献率为17.5%,由此可以通过控制济南市小、中型汽油机动车数量、改善油品和改善机动车排气系统来降低对PM_(2.5)的贡献率,从而减少市区空气中PM_(2.5)的浓度.  相似文献   

19.
天津市道路环境大气颗粒物水溶性无机离子分析   总被引:2,自引:1,他引:1  
大气颗粒物,尤其是其中的水溶性无机离子,对人体危害很大.天津市大气污染中机动车尾气污染相对较高,为探究不同道路类型下水溶性无机离子的污染特征,于2015年4~5月对天津市四类道路类型分别进行大气颗粒物PM_(2.5)和PM_(10)采样及水溶性离子组分分析,并运用皮尔森相关性分析、水溶性离子比值关系分析及主成分分析方法进行探讨.结果表明,天津市水溶性无机离子主要集中在细颗粒物中,不同离子在不同道路下所占质量分数差异很大,二次污染相对较重;二次离子是水溶性无机离子的重要组成部分,在细颗粒物中含量相对较高,在PM_(2.5)中的含量是PM_(10)中的1~2倍左右;K~+、Mg~(2+)、Na~+与Ca~(2+)之间有较高的同源性;各道路PM_(2.5)和PM_(10)第一贡献因子均是燃烧和二次污染的混合源,第二贡献因子主要为扬尘与交通混合源.  相似文献   

20.
为探讨厦门市大气PM_(2.5)水溶性离子污染特征及来源,于2014年8月和12月同步采集了城区和郊区的PM_(2.5)样品.用离子色谱分析了9种水溶性离子(F~-、Cl~-、NO_3~-、SO_4~(2-)、Na~+、K~+、NH_4~+、Ca~(2+)和Mg~(2+))的质量浓度.结果表明,厦门大气PM_(2.5)中水溶性离子浓度处于较低水平,总水溶性离子浓度(μg/m~3)顺序为:冬季城区(18.16)冬季郊区(14.55)夏季郊区(6.87)夏季城区(5.33),降水对水溶性离子有显著的去除作用.观测期间,夏季PM_(2.5)阴离子相对亏损,冬季反之.SO_4~(2-)、NO_3~-、NH_4~+(简称SNA)占全部水溶性离子质量浓度之和的比例达79.64%以上,表明厦门市大气PM_(2.5)二次污染较严重.相关性分析和SNA三角图解表明厦门市夏季NH_4~+主要以(NH4)2SO4的形式存在,其次为NH_4NO_3及碱性游离NH_4~+;冬季则主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,其次为NH_4Cl.N/S值表明夏季PM_(2.5)中水溶性离子污染特征以燃煤源排放为主,冬季以交通排放为主,总体呈现出交通源与燃煤污染并存的复合型污染特征,但受海洋源的影响很小.主成分分析进一步表明厦门市大气PM_(2.5)水溶性离子主要来自燃煤源、交通排放和生物质燃烧源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号