首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
石家庄春季大气气溶胶的散射特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用2010年5月积分浊度仪、PCASP-X2和能见度仪的观测资料,分析了石家庄大气气溶胶的散射特征及其与气溶胶粒子浓度、能见度、气象条件的关系.结果表明,观测期间,450,550,700nm 3个波段的气溶胶散射系数平均值±标准差分别为(257±293),(199±237)和(143±173)Mm-1,散射系数的变化很大,但气溶胶微物理特征相对比较稳定.散射系数日变化呈3峰分布,峰值出现在8:00、13:00和0:00.以550nm波长为例,气溶胶散射系数的变化范围为144~308Mm-1,夜间散射系数大于白天,非晴天散射系数平均值(524.9Mm-1)是晴天散射系数(112.3Mm-1)的4.7倍.气溶胶3个波段后向散射比均大于0.15,说明石家庄细粒子污染比较严重.散射系数和体积浓度成正比,但由于局地气象条件和污染源的影响,有气溶胶体积浓度变大,散射系数变化不大的情况出现.气溶胶散射系数和能见度呈负相关;根据Koschmieder公式计算得到的能见度,能较好反映实际观测情况.当大气相对湿度较高时,气溶胶散射系数随湿度增大呈现两种不同的变化趋势,即一部分气溶胶的散射系数有明显的增大,而另一部分则随着相对湿度的增加并未增大,反而比干气溶胶散射系数要小.局地风场也会影响气溶胶散射特性.  相似文献   

2.
气溶胶的复折射指数是直接影响其散射特性和吸收特性的基本物理量之一.为深入研究城市大气气溶胶的复折射指数特征,引入一种具有高时间分辨率优点的反演方法来反演气溶胶复折射指数.依据辐射传输理论,将天津大气边界层观测站观测到的高精度散射系数、吸收系数和数浓度谱分布数据利用查表法代入Mie理论气溶胶粒子群消光计算公式,对大气气溶胶复折射指数进行反演.结果表明:①天津城区2011年4月观测地点0.55 μm波长处的气溶胶复折射指数实部平均值为1.64,虚部平均值为0.015.②气溶胶复折射指数实部和虚部均有明显日变化规律,实部和虚部均与相对湿度呈正相关,与风速呈负相关.③利用反演得到的复折射指数对不同粒径大气气溶胶的消光特性进行计算发现,对散射特性而言,>0.25~1.00 μm粒子对散射系数的贡献率达86%;对吸收特性而言,>0.25~2.50 μm粒子对吸收系数的贡献率为53%,>2.50~32.00 μm粒子对吸收系数的贡献率为47%.研究显示,>0.25~1.00和>1.00~32.00 μm的粒子对吸收系数的贡献率均较高,但对散射系数而言,>0.25~1.00 μm的粒子贡献率较高,因此综合考虑气溶胶散射系数、吸收系数和消光系数,控制>0.25~1.00 μm的气溶胶粒子数浓度可有效改善大气能见度.   相似文献   

3.
山西夏季气溶胶空间分布飞机观测研究   总被引:2,自引:0,他引:2  
以搭载了多种气溶胶观测仪器的飞机为观测平台,在2013年夏季首次对山西中部地区霾日及晴空大气气溶胶空间分布特性进行了观测,得到气溶胶粒子数浓度和尺度的垂直分布廓线以及不同高度气溶胶粒子谱分布特征.研究发现,山西夏季非降水天气条件下气溶胶粒子以核模态和积聚模态的细粒子为主,粗粒子很少.霾日气溶胶数浓度是晴空的2~3倍,主要是核模态的小粒子;气溶胶粒子数浓度随着高度逐渐减小,低空存在气溶胶累积区,逆温层的存在是导致气溶胶累积区形成的主要原因;气溶胶粒子尺度随高度增加,大粒子主要分布在2500m以上的高空;不同高度上的气溶胶粒子谱均呈双峰或三峰分布,谱型基本一致,从近地面到5000m高空,气溶胶粒子谱随高度的增加略有展宽.观测区域气团后向轨迹模拟结果显示,4000m以上高空气溶胶粒子主要是从中国西北地区远距离输送而来,3000m以下气溶胶粒子则主要来源于近地面排放.  相似文献   

4.
天津城区春季大气气溶胶消光特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用天津大气边界层观测站2011年4月1日~5月10日气溶胶散射系数、吸收系数、PM2.5质量浓度、大气能见度和常规气象观测数据,分析了气溶胶散射系数和吸收系数的变化特征,以及气溶胶消光系数与PM2.5质量浓度和大气能见度的关系,并对两种方法计算的消光系数进行了比较.结果表明,观测期间天津城区气溶胶散射系数为369.93 Mm-1,对大气消光贡献为86.7%,气溶胶吸收系数为36.32 Mm-1,对大气消光贡献为8.5%,单次散射反照率为0.91;气溶胶散射系数和吸收系数的日变化特征具有明显的双峰结构,对应于早晚交通高峰;不同天气类型下其日分布特征存在较大差异,霾日散射系数和吸收系数最高,沙尘日和降水日次之,晴日最低;气溶胶散射系数和吸收系数与PM2.5质量浓度呈线性正相关,与大气能见度呈指数负相关,观测期间气溶胶质量散射效率均值为2.95m2/g;采用Koschmieder’s公式反算能见度获得的大气消光系数,与通过测量气溶胶散射系数、气溶胶吸收系数、气体散射系数和气体吸收系数等分量加和获得的消光系数相比一致性较好,高相对湿度天气下能见度反算值高于各系数加和值.  相似文献   

5.
基于气溶胶光学特性垂直分布的一次浮尘过程分析   总被引:8,自引:4,他引:4  
为了进一步认识上海地区浮尘污染的垂直分布特征,利用地面微脉冲激光雷达(MPL)和CALIPSO星载激光雷达对2009年10月19日远程输送到上海的一次典型浮尘过程的气溶胶光学特性进行分析.结果表明,此次浮尘过程气溶胶层主要存在于2km以下低空中,气溶胶后向散射系数范围0~0.015 km-1·sr-1,MPL消光系数范围0~0.32 km-1.浮尘过程中消光系数先增加后降低,气溶胶层不断抬升.浮尘天气2km以下大气中存在大量小粒径气溶胶颗粒,而0~0.5 km近地面则以颗粒较大的气溶胶为主;2~10 km大气中仅存在少量不规则气溶胶,其中4~6 km高度范围的大气由不规则气溶胶和规则气溶胶混合组成,球型和非球型粒子均存在.CALIPSO星载激光雷达532 nm总后向散射系数和MPL归一化相对后向散射系数的垂直分布特征基本一致.CALIPSO和MPL获得的消光系数垂直分布均随着高度增加而减少,但消光系数值存在较大差异.两者结合起来可以较全面客观地对上海地区浮尘天气进行观测.  相似文献   

6.
为研究南京地区大气气溶胶粒子的微物理特征,于2008年8月~2008年9月在南京北郊和南京紫金山对照点进行了大气气溶胶观测,文章分析了气溶胶的浓度、谱分布、日变化特征以及降水对其数浓度的影响。结果表明:南京北郊大气气溶胶日平均数浓度约是紫金山的2.6倍,最大值数量级高达106,比紫金山高出2个量级;南京北郊气溶胶数浓度谱分布呈单峰分布,紫金山观测区呈双峰分布,峰值都集中在爱根核模态;气溶胶的表面积浓度分布集中在积聚模态,质量浓度则主要集中在积聚模态和粗粒子模态;气溶胶表现出明显的日变化,紫金山观测区上午达到全天最大值,南京北郊午后达到全天最大值,受人为活动影响较大;气溶胶的数浓度与降水强度呈负相关性,降水对粒径范围为0.02μm~0.1μm的气溶胶有很强的清除作用。  相似文献   

7.
中国地区气溶胶类型变化及其辐射效应研究   总被引:1,自引:0,他引:1  
贺欣  陆春松  朱君 《环境科学学报》2020,40(11):4070-4080
利用AERONET网站中国地区各区域多个站点长期的观测数据,通过各类气溶胶光学特性的差异(Extinction Angstrom Exponent,EAE;Single Scattering Albedo,SSA)将中国地区华北区域北京、香河站点,华东区域太湖站点,华南区域香港站点,西北区域SACOL站点气溶胶进行分类分析其气溶胶占比特征及年际变化,并进一步研究不同地区各类气溶胶光学及辐射特性差异.研究结果表明,不同地区各类气溶胶占比特征显著,华北区域北京、香河站点混合吸收型气溶胶Type5占比最多,分别占比35%、31%;其次为城市/工业型气溶胶Type3和Type4;华东区域以Type3、Type4和Type5三类气溶胶为主,分别占比32%、26%、25%;华南区域Type3、Type4气溶胶占比最为突出,占比分别达到46%、21%.西北区域Type5占比高达45%,出现高达34%的沙尘型气溶胶Type7.以不同地区各类气溶胶占比特征为基础,不同气溶胶的年际变化趋势差异较大.不同地区各类气溶胶光学特性参数(AOD(Aerosol Optical Depth)、EAE、SSA)年变化特征表明,华北、华东区域AOD减少、EAE变化小、SSA增大;华南区域整体AOD增大,但近年来AOD显著减少、EAE变化小、SSA增大;西北区域AOD增大、EAE增大、SSA减少,即除了西北区域外,其余区域环境空气质量逐渐好转,粒子尺度变化较小,吸收能力下降.地表气溶胶直接辐射强迫效率(ARFE-BOA)结果显示,除华东区域太湖站点外,Type1对地表的降温冷却作用最大,绝对值均大于210 W·m-2,其次为Type2,即吸收型粒子对地表的贡献大于散射型粒子;关于ARFE-TOA的平均特征,Type4或Type7对大气顶的降温冷却作用最强,而各类气溶胶对大气层的加热作用与ARFE-BOA的平均特征类似,吸收型细粒子对大气层的加热作用较强.  相似文献   

8.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

9.
于2013年1月连续在线观测天津城区气溶胶数浓度谱分布和大气能见度,并结合相关气象资料,探讨相对湿度(RH)对气溶胶浓度谱分布和大气能见度的影响.结果表明,观测期间发生了4次连续雾霾天气过程, 4次雾霾天气过程对应着气溶胶粒子数浓度的连续高值,低能见度天气系高浓度气溶胶粒子和高相对湿度协同所致;随着RH增大,PN1和PN2.5-10呈增长趋势, RH>90%后,PN1和PN2.5-10有所降低,PN1-2.5则持续增长,高RH对气粒转化和气溶胶粒子的碰并聚合作用明显;气溶胶吸湿增长因子计算表明,高RH下水汽对能见度影响很大,尤其是大雾天气下其影响甚至可能超过气溶胶粒子浓度对其的影响.  相似文献   

10.
于2013年1月连续在线观测天津城区气溶胶数浓度谱分布和大气能见度,并结合相关气象资料,探讨相对湿度(RH)对气溶胶浓度谱分布和大气能见度的影响.结果表明,观测期间发生了4次连续雾霾天气过程,4次雾霾天气过程对应着气溶胶粒子数浓度的连续高值,低能见度天气系高浓度气溶胶粒子和高相对湿度协同所致;随着RH增大,PN1和PN2.5-10呈增长趋势,RH90%后,PN1和PN2.5-10有所降低,PN1-2.5则持续增长,高RH对气粒转化和气溶胶粒子的碰并聚合作用明显;气溶胶吸湿增长因子计算表明,高RH下水汽对能见度影响很大,尤其是大雾天气下其影响甚至可能超过气溶胶粒子浓度对其的影响.  相似文献   

11.
北京地区大气消光特征及参数化研究   总被引:1,自引:6,他引:1  
陈一娜  赵普生  何迪  董璠  赵秀娟  张小玲 《环境科学》2015,36(10):3582-3589
为了研究大气消光系数的特征及规律,从2013~2014年在北京地区对大气能见度、气溶胶质量浓度、气溶胶散射系数、黑碳质量浓度、反应性气体以及气象要素开展了系统加强观测,并对已发表的气溶胶光散射吸湿增长因子[f(RH)]拟合方案进行了对比,系统分析了大气消光特征和影响大气消光能力的关键因子,最终建立了大气消光系数参数化模型,探讨不同季节、不同污染条件下参数化方案的特征.结果表明,气溶胶散射作用占环境总消光作用的94%以上,在夏秋季,相对湿度可以使气溶胶的散射能力提升70%~80%.包含气溶胶质量浓度和相对湿度两个因子的参数化模型,可以较好地体现出气溶胶和相对湿度对大气消光系数的影响机制,以及消光能力的季节差异.  相似文献   

12.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

13.
通过对大气消光系数进行组分分解,并借助米散射理论,构建了以均匀混合气溶胶吸湿增长因子为唯一变量的目标函数.进一步利用免疫进化算法优化该目标函数,提出了一种针对均匀混合气溶胶吸湿增长因子的反演算法.基于成都市2017年10~12月浊度计,黑碳仪和GRIMM180环境颗粒物监测仪的地面逐时观测资料以及该时段同时次的环境气象监测数据(大气能见度,相对湿度RH和NO2质量浓度),评估了算法的性能及其适用性.结果表明:对所有测试样本而言,反演均匀混合气溶胶吸湿增长因子的免疫进化算法均能快速收敛到全局最优解.建立了成都地区秋冬季均匀混合气溶胶吸湿增长模型,该模型显著提升了环境条件下气溶胶散射系数的模拟精度,其模拟值与实测值之间的平均相对误差仅为12.7%.该反演算法的普适性可为气溶胶吸湿性及其辐射强迫效应的后续研究提供算法保障.  相似文献   

14.
Physical and chemical properties of ambient aerosols at the single particle level were studied in Shanghai from December 22 to 28, 2009. A Cavity-Ring-Down Aerosol Extinction Spectrometer(CRD-AES) and a nephelometer were deployed to measure aerosol light extinction and scattering properties, respectively. An Aerosol Time-of-Flight Mass Spectrometer(ATOFMS)was used to detect single particle sizes and chemical composition. Seven particle types were detected. Air parcels arrived at the sampling site from the vicinity of Shanghai until mid-day of December 25, when they started to originate from North China. The aerosol extinction,scattering, and absorption coefficients all dropped sharply when this cold, clean air arrived.Aerosol particles changed from a highly aged type before this meteorological shift to a relatively fresh type afterwards. The aerosol optical properties were dependent on the wind direction.Aerosols with high extinction coefficient and scattering Angstrom exponent(SAE) were observed when the wind blew from the west and northwest, indicating that they were predominantly fine particles. Nitrate and ammonium correlated most strongly with the change in aerosol optical properties. In the elemental carbon/organic carbon(ECOC) particle type, the diurnal trends of single scattering albedo(SSA) and elemental carbon(EC) signal intensity had a negative correlation. We also found a negative correlation(r =-0.87) between high mass-OC particle number fraction and the SSA in a relatively clean period, suggesting that particulate aromatic components might play an important role in light absorption in urban areas.  相似文献   

15.
北京大气能见度和消光特性变化规律及影响因素   总被引:1,自引:0,他引:1  
利用长时间序列的大气能见度与湿度等气象资料以及近年来大气污染物的监测数据,探讨了北京大气能见度及消光特性的变化规律及影响因素.结果显示:近50年来北京大气消光作用存在降-升-降的变化过程,1954~1967年以下降为主,20世纪60年代中期至70年代明显上升,此后特别是20世纪90年代以来北京大气消光作用基本呈缓慢下降趋势,能见度变化过程与此相反.从区域分布看北京大气消光作用北部及西部山区低于平原区,平原区存在由北向南逐渐升高的分布规律,即北部平原区低于中部市区,中部市区低于南部平原区.近10年来北京大气颗粒物消光作用区域差异逐渐减小,这与大气污染区域分布变化趋势基本一致.北京大气消光作用20世纪80年代之前冬高夏低,之后转为冬低夏高,对应于大气污染由煤烟型向综合型的转变.大气消光作用平均日变化呈双峰双谷型,09:00和21:00形成双峰,06:00和16:00处于双谷,但月际差异明显.大气消光作用受颗粒物浓度与相对湿度影响显著.高消光作用通常与高相对湿度和高颗粒物浓度有关;低消光作用出现在湿度和颗粒物质量浓度同时较小情况.相对湿度低于70%时,大气颗粒物消光作用会随着PM2.5浓度的升高明显增强,消光作用与PM2.5浓度存在线性关系;当相对湿度大于70%时,消光作用对PM2.5浓度变化的响应并不明显.  相似文献   

16.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

17.
石家庄一次沙尘气溶胶污染过程及光学特性   总被引:1,自引:0,他引:1  
为掌握沙尘气溶胶远距离输送特征及其规律,对2015年4月15日影响石家庄空气质量的沙尘天气背景、污染特征进行了分析,利用HYSPLIT-4模式分析了沙尘气溶胶的后向轨迹,并利用微脉冲激光雷达和太阳光度计CE318监测资料分析了沙尘气溶胶的垂直分布和光学特性演变,与大风无沙尘沉降另一过程进行了对比,探讨了沙尘沉降对消光系数的影响,估算了沙尘沉降对地面PM10浓度的贡献.结果表明:来自蒙古国的沙尘气溶胶以西北路径远距离输送沉降是导致石家庄PM10浓度骤升的主要因素;沙尘沉降对消光系数和地面PM10浓度具有重要贡献;气溶胶快速沉降时间与冷锋过境、冷空气下沉相一致;微脉冲激光雷达监测到整个沙尘气溶胶输送沉降过程,沉降之前沙尘气溶胶主要分布在1500~3000m高空,气溶胶消光系数随高度上升而增大,输送飘浮空中到沉降持续时间较长,为沙尘污染预警提供了"强信号"特征;气溶胶光学厚度随沙尘到达明显上升,浑浊度较高,粒径偏大,地面能见度随气溶胶光学厚度呈幂指数递减.  相似文献   

18.
为初步探讨利用气溶胶光学指标判别污染物来源的适用性,选取天津市冬季一次重污染过程(2017年11月17—21日),对气溶胶的七波段吸收系数、三波段散射系数及其化学组分进行在线观测及分析,研究气溶胶光学特性的变化,并结合化学组分定性分析污染过程不同阶段的污染来源.结果表明:SSA(单散射反照率)可以从散射性组分和吸光性组分对消光贡献的变化判断污染来源.污染积累期,颗粒物中散射性组分(SO42-、NO3-、NH4+)的增幅高于吸光性组分EC(元素碳),导致污染积累期的SSA值高于污染前期和污染消散期,说明污染积累期存在较明显的二次转化过程.SAE(散射波长指数)可以从粒径角度推断污染来源.此次观测的污染积累期SAE值呈较明显的下降趋势,说明在细粒径段(2.5 μm以下)颗粒物粒径有增大的趋势,这主要与颗粒物中无机盐的吸湿增长及颗粒物之间的碰并有关.AAE(吸收波长指数)在一定程度上可以指示吸光颗粒物的类型.污染前期,BrC(棕色碳)在370、470 nm处对光吸收的贡献率分别为50.7%、33.8%;同期PM2.5中ρ(Cl-)、ρ(K+)同步升高,卫星遥感显示,观测点周围有大量火点出现,推测主要受祭祖活动的影响.研究显示,气溶胶光学指标能够从散射性组分和吸光性组分对消光贡献变化、粒径变化、吸光颗粒物类型角度定性解析一部分污染来源,但其对于燃煤源和机动车等重要源类的指示作用还有待进一步研究.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号