首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
夏季中国东海生源有机硫化物的分布及其影响因素研究   总被引:2,自引:0,他引:2  
二甲基硫(DMS)、二甲巯基丙酸内盐(DMSP)和二甲亚砜(DMSO)是海洋中最重要的3种生源有机硫化物.本文系统研究了2013年6月中国东海表层海水中3种硫化物的水平分布规律及其影响因素,并估算了DMS海-气通量.结果表明,表层海水DMS、溶解态DMSPd、颗粒态DMSPp、溶解态DMSOd和颗粒态DMSOp浓度平均值分别为4.70、7.00、27.83、13.66和10.78 nmol·L-1.DMS、DMSP和DMSO与叶绿素a(Chl-a)水平分布规律相似,均呈现近岸高、远海低的趋势.相关性分析结果表明,DMS、DMSPd和DMSOp浓度与Chl-a浓度均有显著的相关性,说明浮游植物生物量是影响东海有机硫化物生产分布的重要因素.此外,研究发现DMS与DMSPd、DMSOd与DMS间分别存在一定的相关性,表明表层海水中DMS主要来源于DMSPd的微生物降解,而DMSOd的主要来源是DMS的氧化过程.此外,夏季东海DMS海-气通量在0.62~33.98μmol·(m2·d)-1之间,平均值为9.71μmol·(m2·d)-1.  相似文献   

2.
于2017年12月~2018年1月现场测定了黄、渤海表层海水中二甲基硫(DMS)、二甲巯基丙酸内盐(DMSP)以及溶解甲烷(CH4)的含量,对DMS、DMSP及CH4的浓度分布和相互关系进行了研究.通过培养实验探究了DMSP降解对DMS和CH4生成的影响,并估算了DMS及CH4的海-气通量.结果表明,表层海水中DMS、DMSPd、DMSPp及CH4的平均浓度分别为(1.39±1.21),(2.87±1.54),(5.59±4.64),(6.91±2.77)nmol/L.DMS、DMSP与Chl-a水平分布基本一致,均呈现近岸高、远海低的趋势.垂直分布上,DMS、DMSP浓度最大值均出现在浅水层,而CH4浓度则随深度的增加而增大,至底层达到最大值.相关性分析表明,DMS、DMSPp与Chl-a存在显著的正相关关系,CH4与DMSPd、DMSPp浓度均存在一定的正相关性(P<0.05).培养实验结果表明,海水中本底DMSPd的浓度越高,DMS的生产速率越大.冬季黄、渤海DMS和CH4海-气通量的平均值分别为(2.73±3.18),(8.14±7.68)μmol/(m2·d),表明冬季黄、渤海是大气中DMS、CH4重要的源.  相似文献   

3.
夏季黄渤海表层海水中二甲亚砜(DMSO)的浓度分布   总被引:2,自引:1,他引:2  
根据2011年6月对黄渤海进行的大面调查,分析研究了夏季表层海水中颗粒态和溶解态二甲亚砜(DMSOp、DMSOd)的水平分布及其周日变化特征.海水中DMSO首先采用NaBH4将其还原为二甲基硫(DMS),再利用冷阱吹扫-捕集气相色谱法进行间接测定.结果表明,表层海水中DMSOp浓度的变化范围是5.43~18.35 nmol·L-1,平均值为(11.47±0.25)nmol·L-1;DMSOd浓度的变化范围是4.75~43.80 nmol·L-1,平均值为(13.42±0.58)nmol·L-1.相关性分析显示:DMSOp与叶绿素a(Chl-a)、温度、盐度等不存在相关性,而DMSOp/Chl-a比值与盐度存在一定的正相关,表明DMSO在藻细胞内具有渗透压调节功能;DMSOd与细菌、DMSOp浓度不存在相关性,而与DMS浓度存在一定的正相关,表明表层海水中DMSOd的主要来源是DMS的光化学氧化.另外,DMSOp与DMSOd均呈现出明显的周日变化规律,白天时段浓度明显高于夜间时段.  相似文献   

4.
于2017年7—8月对中国长江口及其邻近海域表层及重要断面不同深度海水中二甲基硫(DMS)、二甲基巯基丙酸内盐(DMSP)和二甲亚砜(DMSO)的浓度进行了测定,探讨了长江冲淡水对其分布的影响,并估算了DMS的海-气通量.结果表明,表层海水中DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)的浓度平均值分别为(5.69±5.20)、(6.67±4.90)、(19.46±9.26)、(24.67±20.52)和(24.97±20.85) nmol·L~(-1).DMS和DMSP大体呈现出一致的分布规律,高值区出现在冲淡水与海水的混合区域,在长江口口门附近出现低值.相关性分析结果表明,DMSPp与DMSOp存在相关性,这可能与二者有相似的来源和细胞功能有关.DMSPd、DMSOd均与DMS存在相关性,这是因为DMSPd降解是表层海水中DMS的主要来源,而DMS的光氧化和微生物氧化可能是夏季表层海水中DMSOd的重要来源途径.沉积物间隙水中DMSPd浓度高于底层海水,表明沉积物释放也是底层DMSPd的一个来源.此外,夏季长江口及邻近海域DMS的海-气通量介于0.29~34.63μmol·m~(-2)·d~(-1)之间,平均值为(8.37±11.79)μmol·m~(-2)·d~(-1).  相似文献   

5.
于2017年3~4月首次对东海表层海水及大气中3种主要挥发性有机硫化物(VSCs)即羰基硫(COS)、二甲基硫(DMS)、二硫化碳(CS2)的浓度分布进行观测,研究了海水中3种主要VSCs的相关性,并估算了3种VSCs的海-气通量.结果表明,东海表层海水COS、DMS和CS2的浓度平均值分别为(1.0±0.4)、(6.8±6.8)和(0.6±0.4)nmol/L,总体来看东海表层水中3种VSCs呈现出近岸高、远海低的分布趋势.相关性分析表明DMS与Chl-a存在显著相关性,表明浮游植物生物量是影响东海海水中DMS分布的主要因素;同时DMS与CS2存在着显著的相关性,表明这2种物质的来源有着一定的共性.大气中COS、DMS和CS2的浓度平均值分别为:(294.7±158.8)、(22.7±18.0)和(108.8±88.1)×10-12,分布呈现出近岸高,远海低的趋势,主要受到人为活动等陆源输入的影响.此外春季东海COS、DMS和CS2的海-气通量平均值分别为(4.0±3.4)、(25.8±33.8)和(2.6±2.9)μmol/(m2⋅d),表明春季东海是大气中3种VSCs重要的源.  相似文献   

6.
王鑫  张洪海  杨桂朋 《环境科学研究》2014,27(10):1119-1125
于2011年12月—2012年1月对我国东海、黄海表层及不同深度海水中c(DMSOd)(DMSOd为溶解态二甲亚砜)和c(DMSOp)(DMSOp为颗粒态二甲亚砜)的分布进行了研究,并探讨了其来源及影响因素. 结果表明:表层海水中c(DMSOd)和c(DMSOp)分别为(10.10±7.54)和(8.72±7.80) nmol/L,其水平分布明显受调查海域中浮游植物组成和丰度的影响;垂直分布上,c(DMSOd)和c(DMSOp)的最大值均出现在浅水层(3~20 m). 相关分析表明,c(DMSOd)与c(DMS)(DMS为二甲基硫)之间没有相关性,但与c(DMSOp)显著相关(R=0.442, n=41, P<0.006),说明冬季表层海水中DMSOd主要来源于浮游植物细胞内DMSO的释放,而不是DMS的氧化(光化学氧化和微生物氧化). 另外,c(DMSOp)/ρ(Chla)与盐度呈正相关(R=0.532, n=46, P<0.004),说明盐度的改变会影响浮游植物组成的变化,进而影响c(DMSOp).   相似文献   

7.
利用连续液化采样器(PILS)-超声雾化器-气溶胶化学组分检测仪(ACSM)联用系统,对深圳市冬季PM2.5中水溶性组分进行在线连续观测,获取高时间分辨率的水溶性有机物(WSOM),SO42-,NO3-,NH4+和Cl-浓度信息以及WSOM的质谱结构信息.分析结果表明:PM2.5中水溶性组分的总质量浓度变化范围为4.0~117μg/m3,平均浓度为20.1μg/m3,其中WSOM(25.2%)和SO42-(22.4%)是最主要的贡献组分.ACSM质谱显示WSOM具有氧化态有机气溶胶(OOA)的质谱特征,其氧碳比(O/C)的平均值达到(0.60±0.09),且WSOM与二次无机离子(SO42-+NO3-)和钾(K)有强相关性,与黑碳(BC)的相关性较弱,表明了观测期间WSOM主要来源于二次反应产生的二次有机气溶胶(SOA)和生物质燃烧,与机动车等一次排放没有明显关系.  相似文献   

8.
于2016年7~8月采集了陕西省西安市(城市)及蔺村(农村)夏季昼夜PM2.5样品,分析其有机碳(OC)、元素碳(EC)和无机离子等化学组分的含量,探讨关中平原城市和农村地区PM2.5的化学组成和来源的差异.结果表明,采样期间西安和蔺村的PM2.5浓度分别为(49.7±22.8)和(62.6±14.2)μg/m3.西安PM2.5中OC和EC的浓度[(6.5±2.5)μg/m3,(3.2±1.8)μg/m3]与蔺村[(6.8±1.8)μg/m3,(3.8±2.3)μg/m3]相当.西安OC/EC比值白天(2.6)高于夜晚(1.9),蔺村反之(白天:1.6;夜晚:2.7),主要是因为夜间城市地区重型卡车运输活动增强导致排放更多EC,而夜间农村地区人为活动较少导致EC排放显著降低.西安和蔺村无机离子总浓度分别为(20.2±14.6)和(30.1±10.5)μg/m3,占PM2.5浓度的40.6%和47.6%.蔺村SO42-的平均浓度高达19.0μg/m3,占PM2.5浓度的30%以上,远高于西安(9.4μg/m3和18.9%),主要与农村固体燃料(煤和生物质)使用有关.西安NO3-和Ca2+的浓度及其对PM2.5的贡献、NO3-/SO42-比值均明显大于蔺村,表明城市地区受机动车尾气和扬尘的影响更大.西安K+与Ca2+和Mg2+的相关性较强,而蔺村K+与EC的相关性显著强于西安,说明西安市区K+由粉尘源主导,而农村地区则主要来自生物质燃烧.  相似文献   

9.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

10.
对太湖典型草(包括沉水植物及挺水植物湖区)、藻型湖区水-气界面N2O排放通量、水柱溶存浓度、泥-水界面通量以及3个湖区的水柱及沉积物理化性质进行了原位观测及实验室分析研究,并针对影响N2O生成与排放的主要环境因子进行了室内的微环境模拟试验.研究结果表明:水-气界面N2O释放通量及泥-水界面N2O释放通量为藻型湖区 > 沉水植物湖区 > 挺水植物湖区((123.10±11.43)μg/(m2·h),(79.19±4.90)μg/(m2·h),(53.45±4.22)μg/(m2·h)和(29.60±0.20)μmol/(m2·h),(10.89±1.66)μmol/(m2·h),(3.83±0.30)μmol/(m2·h));水体溶存N2O浓度均为藻型湖区 > 挺水植物湖区 > 沉水植物湖区((0.0247±0.0003)μmol/L,(0.0236±0.0003)μmol/L,(0.0219±0.0001)μmol/L);室内微环境实验结果表明:冬季升高温度能够显著地提高N2O的生成潜力,高盐度对3种生态类型湖区沉积物N2O的生成速率总体表现出抑制作用,藻型湖区及挺水植物湖区沉积物N2O释放潜力在添加Cl-组明显高于控制组,氮盐度过高会抑制沉积物N2O产生,而沉水植物湖区沉积物N2O产生受到抑制;随添加NH+4-N和NO-3-N等营养盐浓度升高,藻型湖区及沉水植物湖区沉积物中N2O生成速率增加,挺水植物湖区N2O生成速率降低,而乙酸盐作为微生物活动的碳源和能源对N2O生成表现出抑制作用.冬季太湖典型草、藻型湖区N2O排放存在显著差异,冬季草/藻型湖区N2O生成主要受冬季低温的限制,另外也受水柱无机氮形态及浓度的影响.  相似文献   

11.
为深入研究河口近岸海域DMS(二甲基硫)的生物地球化学过程,于2014年2月(枯水季)和7月(丰水季)对长江口及附近海域表层海水中DMS及其前体物质DMSP(二甲巯基丙酸内盐)的浓度分布及影响因素进行了研究,测定了DMSPd(溶解态DMSP)的降解速率和DMS的生物生产与微生物消费速率,并估算了DMS的海-气通量.结果表明:①枯水季和丰水季c(DMS)、c(DMSPd)、c(DMSPp)(DMSPp为颗粒态DMSP)的平均值±标准偏差分别为(0.54±0.28)(2.04±1.32)(6.65±5.07)和(3.99±3.70)(5.57±4.72)(14.26±9.17)nmol/L,长江口海域丰水季生源硫化物的浓度明显高于枯水季.②枯水季和丰水季c(DMSPd)与ρ(Chla)均呈弱相关,说明浮游植物在控制长江口海域DMSP的生产分布中发挥重要作用.③枯水季和丰水季c(DMS)/ρ(Chla)的平均值±标准偏差分别为(2.62±3.28)和(4.60±7.49)mmol/g,表明丰水季DMS的高产藻种(甲藻)在浮游植物生物量中所占比例高于枯水季.④枯水季表层海水中DMSPd的降解速率和DMS的生物生产速率分别介于(2.84~30.53)和(0.52~2.19)nmol/(L·d)之间,平均值分别为14.55和1.30 nmol/(L·d),表明DMS并不是DMSPd的主要降解产物.⑤枯水季和丰水季DMS的海-气通量平均值±标准偏差分别为(0.36±0.32)和(2.17±2.98)μmol/(m2·d),而且丰水季的硫排放量明显高于枯水季,这主要与夏季较高的c(DMS)有关.研究显示,长江口海域生源硫化物的浓度变化及分布特征呈明显的季节性差异,河口近岸海域是海洋有机硫排放的重要区域.   相似文献   

12.
选取我国华中丘陵区的湖南省长沙县一个典型水稻种植区,对2015与2016年2年雨水样中的SO42-S和大气SO2的沉降量进行监测,分析雨水中SO42-、NO3-的关系,解析大气硫沉降的主要来源.结果表明,研究区大气中SO2-S和雨水中SO42--S的年均浓度分别为8.5 μg/m3和1.1mg/L,大气硫沉降年均总量为26.8kgS/(hm2·a),其中年均降雨混合沉降量18.2kgS/(hm2·a),年均干沉降量为8.6kgS/(hm2·a).研究区域硫素干、混合沉降量存在明显的季节差异,硫素混合沉降春季高于夏、秋、冬季,而硫素干沉降冬季高于春、夏、秋季.雨水中NO3-/SO42-的质量比大多小于1,表明研究区大气硫素主要来自固定污染源(燃煤).华中丘陵区稻田具有较高的硫沉降,但硫沉降量已较21世纪初出现了较大幅度下降,农业生产中需要根据农田硫素收支状况酌情补充硫肥来保证作物高产稳产.  相似文献   

13.
选取我国华中丘陵区的湖南省长沙县一个典型水稻种植区,对2015与2016年2年雨水样中的SO42-S和大气SO2的沉降量进行监测,分析雨水中SO42-、NO3-的关系,解析大气硫沉降的主要来源.结果表明,研究区大气中SO2-S和雨水中SO42--S的年均浓度分别为8.5 μg/m3和1.1mg/L,大气硫沉降年均总量为26.8kgS/(hm2·a),其中年均降雨混合沉降量18.2kgS/(hm2·a),年均干沉降量为8.6kgS/(hm2·a).研究区域硫素干、混合沉降量存在明显的季节差异,硫素混合沉降春季高于夏、秋、冬季,而硫素干沉降冬季高于春、夏、秋季.雨水中NO3-/SO42-的质量比大多小于1,表明研究区大气硫素主要来自固定污染源(燃煤).华中丘陵区稻田具有较高的硫沉降,但硫沉降量已较21世纪初出现了较大幅度下降,农业生产中需要根据农田硫素收支状况酌情补充硫肥来保证作物高产稳产.  相似文献   

14.
重庆市大气降水污染及其沉降特征   总被引:1,自引:0,他引:1  
基于东亚酸沉降监测网(EANET)的湿沉降观测数据,针对2002~2016年重庆市的降水电导率、pH值和降水中水溶性离子浓度与沉降量进行了研究.结果表明,重庆市郊区站点的降水酸化问题较严重,而城市站点降水污染较严重.降水中水溶性离子平均浓度在城市和郊区站点分别达到627.00 μeq/L和480.14 μeq/L,其中城市站SO42-、NH4+和Ca2+的平均浓度为郊区站的1.21~1.47倍.由SO42-与NO3-占比说明重庆市的降水类型由硫酸型向硫酸-硝酸混合型转变.城市站的主要离子沉降量较高,约为郊区站点的1.14倍.降水中的无机氮平均沉降量在17.59~47.31kg/(hm2·a)范围内浮动,并且主要以NH4+-N为主,其平均沉降量为NO3--N的2倍左右,说明重庆市大气氨/铵污染比较严重.  相似文献   

15.
于2012年10月对中国东海表层海水中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP)、溶解自由态蛋氨酸(DF Met)的浓度分布及影响因素进行了研究。分析结果表明,秋季东海表层海水中硅酸盐(SiO3-Si)、溶解无机氮(DIN)、磷酸盐(PO4-P)浓度变化范围分别为0.11~1.76、0.08~0.56和0.013~0.054 mg/L,平均值为0.50±0.36、0.19±0.11和0.024±0.0098 mg/L,且东海西南部上升流区出现营养盐浓度的高值区。表层海水中DMS、DMSP和DF Met的浓度分别在0.47~6.46、9.44~55.57和3.48~14.42 nmol/L之间,平均值分别为3.10±1.93、28.05±14.17和6.19±2.30 nmol/L。DMS、DMSP的水平分布与叶绿素a(Chl a)分布基本一致,呈现出近岸向远海降低的趋势。所调查海域的DMS/Chl a和DMSP/Chl a比值变化范围分别为2.59~27.66和27.37~103.34 mmol/g,平均值分别为11.46±5.02和65.08±23.41 mmol/g,与该海域硅藻为浮游植物优势种的调查结果相一致。此外,秋季东海表层海水DMS的海-气通量介于0.89~105.50 μmol/(m2·d)之间,平均值为35.65 ±31.53 μmol/(m2·d)。  相似文献   

16.
运用吹扫-捕集气相色谱法于2016年6月对东海海水和大气中5种短寿命挥发性卤代烃的浓度含量、分布来源特征及海-气通量进行了研究.结果表明,表层海水中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3浓度平均值及范围分别为8.93(0.39~23.49) pmol/L、15.02(4.77~32.75) pmol/L、0.97(0.30~2.16) pmol/L、9.35(6.8~18.46) pmol/L和12.24(2.60~50.04) pmol/L.受陆源输入、水团和生物活动释放的影响,表层海水中CH3I、CH2Br2和CHBrCl2的浓度分布呈现近岸高远海低的趋势,CHBr2Cl和CHBr3浓度呈现点状分布.相关性分析发现CHBr3和Chl-a存在显著相关性,推断浮游植物生物量可能影响CHBr3的浓度分布.大气中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3浓度平均值及范围分别为3.52×10-12(1.72×10-12~10.00×10-12)、3.82×10-12(0.20×10-12~34.95×10-12)、1.40×10-12(0.46×10-12~6.18×10-12)、1.55×10-12(0.16×10-12~4.66×10-12)和6.63×10-12(2.20×10-12~11.61×10-12).受陆源气团输送、生物生产和气象条件的共同影响,春季大气中5种短寿命挥发性卤代烃浓度分布较为复杂.海-气通量的估算结果表明春季东海是大气中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3的源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号