首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
温度对短程硝化反硝化的影响   总被引:18,自引:0,他引:18  
以间歇式活性污泥法(SBR)处理生活污水,系统考察了温度变化对短程硝化反硝化稳定性和硝化反硝化速率的影响.结果表明:在较高哌温度下((28±1)℃),通过实时控制和控制污泥龄在lOd左右,可以成功实现短程硝化反硝化.在此基础上对完全亚硝酸型硝化的污泥(NO2--N/NOx--N≈1)进行降温实验,每降1℃稳定一个多月,半年后不刻意控制温度,经历了冬季lO℃的低温,成功的稳定了常温、低温短程硝化反硝化,亚硝化率始终维持在78.8%以上.实验发现降低温度后对于AOB和NOB的活性都有很大的影响,但对于AOB的影响要大于NOB,对比氨氧化速率的影响大于比反硝化速率的影响.26℃条件下的比氨氧化速率和比反硝化速率分别是10℃条件下的4.49和2.91倍.可见降低温度对于短程系统硝化反应的影响要大于反硝化的影响.  相似文献   

2.
为了探究游离亚硝酸(FNA)旁侧处理絮体污泥来恢复城市污水短程硝化/厌氧氨氧化一体化(PN/A)工艺的可行性,考察了不同浓度FNA对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响,探究了SBR反应器两次采用FNA处理絮体污泥的运行效果.结果表明:采用0.45mgHNO2-N/L的FNA处理能够抑制NOB活性,亚硝积累率(NAR)达88.8%,但投加后第8d开始NOB活性逐渐恢复.采用1.35mgHNO2-N/L的FNA处理能够显著抑制NOB活性,NAR达89.1%,与此同时AOB活性也受到抑制,氨氮转化率降低为6.8%.采用增大好/缺氧时间比即t/t(由0.4~2.7)以及提高DO(由0.3~1.5mg/L)的方法能够恢复AOB活性,氨氮转化率达77.8%,在150d内NOB活性未恢复,NAR达98.1%.随着短程硝化的稳定实现,系统脱氮性能逐渐恢复,平均出水总无机氮(TIN)为8.2mg/L,平均TIN去除率为84.1%.因此,通过先用较高FNA处理絮体污泥同时抑制AOB与NOB,再采用增大t/t并提高DO来恢复AOB活性的策略,能够实现PN/A工艺短程硝化的恢复.  相似文献   

3.
于濛雨  刘毅  田玉斌  石欢  徐富  杨宏 《环境科学》2017,38(7):2925-2930
为了提高包埋氨氧化细菌短程硝化的效率,富集培养氨氧化细菌(AOB)并固定化.富集培养阶段采用连续式运行方式,以游离氨(FA)为抑制亚硝酸盐氧化菌(NOB)生长的手段,并通过定时排泥方法使NOB逐渐从系统中淘洗出去.富集培养结束后以聚乙烯醇(PVA)为包埋材料,对筛选培养的氨氧化细菌进行固定化,反应器包埋填充率为8%.采用连续式运行方式,通过逐步增加氨氮负荷的方法提高氨氧化速率.最终在富集培养系统中实现了污泥比氨氧化速率(以NH_4~+-N/VSS计)2.028 g·(g·d)~(-1)的高表达和亚硝酸盐氮90%以上的高积累.通过对污泥富集培养前后细菌群落组成的高通量测序分析,结果表明,培养前原污泥多样性较大,具有硝化作用的Nitrosomonas仅有0.24%,Nitrospira有2.7%.富集培养后的活性污泥多样性明显变小,优势菌种为Nitrosomonas(18%),而Nitrospira仅剩0.02%;包埋固定化后,系统迅速实现了短程硝化,最终短程硝化的速率达到了50 mg·(L·h)~(-1),亚硝酸盐氮积累率稳定在90%以上.  相似文献   

4.
周倩  张林  唐溪  唐崇俭 《中国环境科学》2021,41(12):5673-5679
采用序批式生物反应器(SBR),以厌氧-好氧-缺氧的运行方式,研究了低C/N比下内碳源驱动的短程硝化反硝化工艺运行性能.结果表明,反应器内可同时富集反硝化聚糖菌(DGAOs)和氨氧化细菌(AOB).DGAOs可以利用聚-β-羟基脂肪酸酯(PHA)为内碳源进行反硝化,且利用的PHA中PHB (聚-β-羟基丁酸酯)占主要部分.稳定运行后,第39d厌氧末期污泥胞内存储物质在荧光显微镜下清晰可见,内碳源存储的PHA在缺氧阶段净消耗量为2.34mmol C/L,较文献报道值高29%.经过55d的驯化后,SBR系统达到了较为稳定的脱氮效果,平均氨氮去除率为(93.13%±4.91%),内碳源反硝化效率为(49.62%±8.97%).驯化后的污泥淘汰了反硝化聚磷菌(DPAOs)和亚硝酸盐氧化菌(NOB),富集了DGAOs和AOB,其丰度从接种时的0.13%和0.20%分别上升到7.13%和1.11%,实现了低C/N下内碳源驱动短程硝化反硝化.  相似文献   

5.
SBR法常、低温下生活污水短程硝化的实现及特性   总被引:9,自引:1,他引:8       下载免费PDF全文
采用序批式反应器(SBR)处理实际生活污水,通过实时控制好氧曝气时间,在常温下快速实现短程硝化,并在低温下长期维持稳定的短程硝化.结果表明,随着温度逐渐降低,比氨氧化速率略微减缓,27℃的平均比氨氧化速率是13℃时的1.68倍,但亚硝化积累率始终维持在90%以上,该温度区间内氨氧化反应的温度系数为1.051.通过荧光原位杂交(FISH)技术对低温下维持稳定短程硝化的污泥进行种群分析发现,实时控制策略为氨氧化菌(AOB)成为优势硝化菌群创造了有利条件,AOB的相对百分含量达到8%~9%,而亚硝酸盐氧化菌(NOB)逐渐被淘洗出反应器.在低温下要实现短程硝化,可首先在常温下利用好氧曝气时间实时控制实现亚硝态氮的积累和AOB的优势生长,然后通过逐渐降温使AOB适应在低温下生长.  相似文献   

6.
模拟缺氧/好氧(A/O)模式运行的序批式活性污泥法(SBR)处理系统,探究利用羟胺实现城市污水短程硝化的投加点优化.批次实验发现,溶解氧存在会降低羟胺对亚硝酸盐氧化菌(NOB)抑制效果的(20±0.5)%.此外,相较于未经缺氧处理和延长缺氧时间(>15min)处理,缺氧时间为1~5min可提高NOB活性抑制率13%~25%.长期试验表明,在缺氧段末投加羟胺的短程硝化系统维持NO2--N积累率92%以上,而在好氧阶段投加羟胺的系统NO2--N积累率逐渐降低.qPCR分析证明,羟胺投加点为缺氧段末可在充分抑制NOB基础上,降低对氨氧化菌(AOB)的抑制作用,从而有利于AOB成为优势菌群结构.本研究为优化羟胺投加点和稳定维持短程硝化提供理论基础.  相似文献   

7.
游离氨对硝化菌活性的抑制及可逆性影响   总被引:11,自引:0,他引:11  
为考察游离氨(FA)对硝化菌(氨氧化菌AOB和亚硝酸盐氧化菌NOB)活性的抑制影响,采用SBR反应器,基于FA与过程控制协同作用在实现短程硝化的基础上,考察了不同FA浓度(1.0,5.3,16.6,13.4,9.9,5.2,1.0mg/L)梯度下,FA对AOB和NOB活性的抑制作用及可逆性.结果表明,当FA浓度达到13.4mg/L时,系统内亚硝态氮积累率(NiAR)逐渐增加,硝态氮积累率(NaAR)逐渐减小,且NiAR/ NaAR>1时,系统实现了稳定短程硝化.在此FA浓度条件下,FA对AOB和NOB活性均产生一定的抑制作用,但相对于AOB,NOB对FA的抑制作用更加敏感.当AOB活性被短暂抑制后,其活性又迅速恢复;而NOB活性被完全抑制.此后当FA浓度又逐渐降至1.0mg/L时,AOB活性始终维持较高水平,而NOB活性尚未恢复.也即是说,在本试验控制的FA浓度条件下,FA对AOB活性的抑制作用是可逆的,而对NOB活性的抑制作用不可逆.  相似文献   

8.
DO/NH4+-N实现短程硝化过程中生物膜特性   总被引:1,自引:1,他引:0  
实验探究了短程硝化实现过程中生物膜特性的变化情况.采用比值控制(DO/NH+4-N)实现短程硝化,分别取亚硝酸盐积累率为10.27%、52.12%和93.54%时生物膜样品,利用荧光原位杂交(FISH)和激光共聚焦显微镜(CLSM)联用技术观察总菌、氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)数量和空间结构的变化,通过三维激发发射矩阵(EEM)观察胞外聚合物分泌和成分变化情况.比值控制成功富集AOB,并可在NOB未洗脱完全的情况下实现短程硝化.异养菌和硝化菌共存于生物膜内上,异养细菌在外层,硝化菌分布在生物膜表面6~25μm.短程硝化实现的过程中,AOB/NOB值逐步增长,稳定运行时期比值高达15.56.反应器运行过程中,EPS和微生物菌群变化息息相关.微生物活性下降,EPS分泌减少;短程硝化稳定运行时期,NOB等不耐高亚硝酸的菌群衰亡,芳香性蛋白质荧光强度降低.但三维荧光光谱显示,短程硝化实现过程中EPS化学成分变化不明显.  相似文献   

9.
高浓度游离氨冲击负荷对生物硝化的影响机制   总被引:4,自引:4,他引:0  
季民  刘灵婕  翟洪艳  刘京  苏晓 《环境科学》2017,38(1):260-268
工业废水厂或含工业废水较多的城市污水处理厂,在运行过程中可能会意外受到高浓度氨氮废水急性冲击负荷的影响,造成生物硝化反应受到抑制,出水不能稳定达标.为了指导实际污水处理厂应对游离氨(FA)急性冲击负荷造成的出水不达标问题,本文探究高浓度氨氮废水对污水生物硝化系统的影响机制.本文利用序批式活性污泥反应器(SBR)处理模拟高氨氮废水,通过监测氨氮最大比降解速率、硝酸盐氮最大比生成速率、亚硝化和硝化比耗氧速率,硝化菌丰度等指标,研究高浓度氨氮废水中FA对硝化菌活性的影响规律.结果表明,FA在低浓度范围内,增加FA急性负荷能够促进硝化活性,而当FA急性冲击负荷大于一定值时,会对硝化作用造成抑制;FA浓度越大,受到抑制的硝化生物活性所需要的恢复周期越长.利用荧光原位杂交分析技术,发现当进水FA浓度(以N计)从3.6 mg·L~(-1)升高到8.1 mg·L~(-1)时,氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)菌群数量都略微升高,而当FA浓度大于8.1 mg·L~(-1)时,AOB和NOB菌群数量明显下降.FA对AOB和NOB菌群的临界抑制浓度分别为8.1 mg·L~(-1)和6.6 mg·L~(-1),NOB相对于AOB菌群更敏感.  相似文献   

10.
采用Miseq高通量测序技术研究氨氮进水负荷对ABR-MBR组合工艺MBR池中微生物种群的丰度及优势菌群的影响.结果表明,温度为28~32℃、pH值为7.1~7.4、DO为0.5~1mg/L并逐步提高氨氮进水负荷的条件下,可以使氨氧化菌(AOB)大量富集,并抑制亚硝酸盐氧化菌(NOB)的活性,从而实现短程硝化的稳定运行.在氨氮进水负荷为0.94kg/(m3·d)时,平均亚硝酸盐积累率达到60%以上,氨氮去除率稳定在90%.在系统运行过程中,变形菌门是系统中的优势菌门,Nitrosomonas的相对丰度由4.97%升至22.56%,硝化螺菌属的相对丰度为0.06%~2.12%.因此,ABR-MBR组合工艺短程硝化过程中亚硝酸盐积累率与AOB的活性、相对丰度密切相关,即AOB的大量富集可以有效实现短程硝化,而NOB的小幅度增长不会影响短程硝化的实现.系统中微生物种群的多样性和功能微生物的结构稳定性保证了ABR-MBR工艺具有稳定和较好的处理效果.  相似文献   

11.
三段式硝化型生物接触氧化反应器的启动及特性   总被引:1,自引:0,他引:1  
采用实际生活污水,研究了三段式串联的硝化型生物接触氧化反应器的挂膜启动及各段的硝化特性.试验结果表明:利用中间沉淀池出水作为生物接触氧化反应器的进水进行自然挂膜,在无需投加接种污泥的情况下,20d挂膜成熟,NH4+-N的去除率达到98%以上.反应器中随着沿程推流,三段的生物量和生物膜厚度逐渐降低,最大的生物量和生物膜厚度分别为1271.25mg/L和119.45μm.分析各段的硝化特性,发现三段在低温15℃条件下仍具有较高的比硝化速率,并且在同一温度下(15,23,32℃),第2、3段的比硝化速率均大于第1段.针对上述现象,根据比耗氧速率SOUR粗略估计了AOB和NOB在各段中的相对比例.3段AOB的百分比分别为(25.64+4.89)%, (34.59+5.02)%, (42.50+1.57)%,而NOB的百分比为(23.52+3.35)%, (39.65+4.26)%, (40.69+2.19)%. 此外,系统运行125d的FISH结果表明,3段的微生物菌群分布确实存在差异.与第1段相比,后2段的AOB和NOB更容易成为优势菌.  相似文献   

12.
生活污水常温处理系统中AOB与NOB竞争优势的调控   总被引:10,自引:4,他引:6  
曾薇  张悦  李磊  彭永臻 《环境科学》2009,30(5):1430-1436
常温(19℃±1℃)条件下,采用SBR工艺处理低碳氮比(C/N)实际生活污水,研究氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)竞争优势的调控,在接种全程硝化污泥的系统中使AOB成为优势菌群,启动并维持常温短程硝化.通过控制曝气量为40 L/h使系统溶解氧处于较低水平(DOaverage<1.0 mg/L),同时结合好氧硝化时间的优化控制,即在pH值“氨谷"点前及时停止曝气的短周期定时控制,强化AOB的竞争优势.待AOB的竞争优势初步形成后(亚硝酸盐积累率NO-2-N/NO-x-N达到50%),每周期曝气时间随着NO-2-N/NO-x-N的提高由3 h逐步延长至4 h、 5 h,从而提高NH+4-N去除率,进一步增强AOB在系统中的竞争优势,短程硝化成功启动,NO-2-N/NO-x-N稳定在95%以上.FISH检测结果表明AOB大约占总菌群的9.97%.在线控制好氧硝化时间可以很好地维持短程硝化效果,NH+4-N去除率达到97%以上.研究还表明,对于全程硝化污泥常温下如果不限制溶解氧,单纯依靠短周期定时控制无法使AOB成为优势硝化菌群.  相似文献   

13.
吴军  张悦  徐婷  严刚 《中国环境科学》2016,36(12):3583-3590
经精确测定AOB和NOB的溶解氧半速度常数及其他动力学参数,研究在AOB溶解氧亲和力低于NOB条件下,在序批反应器中短程硝化实现机制.测得AOB和NOB的溶解氧半速度常数分别为0.46和0.14mg O2/L.在这种条件下,AOB的最大比生长速率高于NOB是实现短程硝化的重要特点,测得的AOB和NOB最大比生长速率分别为0.65和0.45d-1.两级硝化数学模拟的结果表明,在AOB的溶解氧亲和力低于NOB条件下,低溶解氧和高泥龄都不利于短程硝化实现,而较高溶解氧和低泥龄的组合条件有利于短程硝化实现.在序批反应中的实验结果验证了数学模拟结论的正确性.  相似文献   

14.
羟胺抑制协同pH调控对人工快渗系统短程硝化的影响   总被引:4,自引:0,他引:4  
陈佼  张建强  文海燕  张青  杨旭  李佳 《环境科学学报》2016,36(10):3728-3735
针对人工快渗系统(CRI)总氮去除率低的问题,研究了羟胺抑制协同pH调控对人工快渗系统实现由全程硝化向短程硝化转化的可行性,探讨了其对系统内氮素污染物迁移转化和硝化功能菌空间分布及活性的影响.结果表明,0.5 mmol·L~(-1)羟胺连续添加13 d后可实现CRI系统短程硝化的快速启动,氨氮去除率、亚硝氮积累率分别为91.1%、77.9%,经16 d不添加羟胺运行后氨氮去除率、亚硝氮积累率分别降低3.9%、9.8%,此时调控进水pH至8.4,氨氮去除率和亚硝氮积累率均超过90%,CRI系统短程硝化效果显著且稳定性较高.羟胺对硝化菌具有选择性抑制,对AOB和NOB产生明显抑制的浓度分别为0.7、0.5 mmol·L~(-1),羟胺浓度为1.0 mmol·L~(-1)时AOB和NOB活性均被严重抑制且解抑较难;pH调控对短程硝化的影响主要与游离氨(FA)的抑制作用有关,对AOB和NOB产生明显抑制的FA浓度分别为26.5、5.6 mg·L~(-1),NOB比AOB对FA的敏感性更高.  相似文献   

15.
选取具备良好硝化能力的活性污泥为试验对象,考察其在不同强度(0,0.15,0.39,0.62和1.16μE/(L·s))及不同时间(0,1,2,3和4h)的长波紫外(UVA)辐照下,氨氧化菌(AOB)及亚硝酸盐氧化菌(NOB)活性的响应情况.结果显示:UVA辐照强度的增加对NOB活性产生显著性影响(P<0.01),而对AOB活性的影响则微乎其微(P>0.05),且随UVA辐照时间的延长,AOB与NOB之间活性差异越大.动力学拟合结果表明UVA辐照下NOB的衰亡速率(b=0.6938h-1)远大于AOB (b=0.1423h-1),NOB对于UVA辐照的耐受性低于AOB.UVA辐照下AOB与NOB活性差异可能与UVA诱导的氧化应激效应有关,即UVA辐照能够诱导微生物胞内活性氧(ROS)水平的激增,对细胞膜形成氧化性损伤,破坏细胞膜结构完整性,加速微生物走向衰亡.  相似文献   

16.
本研究采用具有氨氮富集分离特性的阳离子交换膜-超滤(CEM-UF)组合膜与硝化/反硝化结合处理低C/N废水,考察该系统不同流量比下低C/N废水的硝化、反硝化脱氮特性,并通过对硝化、反硝化活性污泥进行16Sr DNA高通量测序,分析功能微生物群落结构特征.结果表明,系统进水TN为60 mg·L-1,COD/TN为2.65下,各流量比下硝化均有较好效果,平均氨氮去除率为98.7%,流量比值由1∶2上升到1∶6过程中,反硝化m(COD)/m(NO-3-N)随之升高,1∶6时平均硝氮去除率达到最高,为86.28%,系统总氮去除率由22.56%上升到46.8%.Illumina高通量测序结果表明,硝化污泥中可以固氮的Proteobacteria菌门占30.9%,重要的亚硝酸盐氧化菌Nitrospirae菌门占3.06%,属水平上检测到氨氧化菌(AOB)Nitrosomonas和Nitrosospira,亚硝酸盐氧化菌(NOB)Nitrospira和Nitrobacter,AOB与NOB菌比例较高,与硝化反应器中较好的硝化效果相一致.反硝化污泥中Proteobacteria菌门占主导地位(53.13%),其次是Bacteroidetes菌门(10.93%),在属的水平上检测到Dechloromonas、Thauera、Castellaniella、Alicycliphilus、Azospira、Comamonas、Caldilinea和Saccharibacteria多种具有反硝化脱氮作用的相关菌属,反硝化菌所占比例为25.91%,反硝化污泥中具有反硝化功能的微生物丰富,反硝化效果良好.  相似文献   

17.
为强化城市污水短程硝化-厌氧氨氧化(SPNA)系统脱氮性能与稳定性,在间歇曝气条件下研究投加外源全程硝化污泥对城市污水SPNA系统的影响及机理.结果显示,空白组(SBR3)总氮去除率由35.5%升高至66.3%,短周期分批次投加外源全程硝化污泥(SBR2,投加周期为5d,投加比为2.5%)与长周期分批次投加(SBR1,投加周期为20d,投加比为10%)的SPNA系统总氮去除率分别由31.7%和36.5%升高至76.3%和67.2%,这表明,投加全程硝化污泥有利于提高SPNA系统的脱氮性能,且当投加总量相同时,短周期分批次投加的效果优于长周期分批次投加.功能菌活性结果与脱氮效果一致,SBR1~SBR3的厌氧氨氧化菌(AnAOB)最大活性分别由3.43mg-N/(L·h)升高至7.66,8.19和7.31mg-N/(L·h),氨氧化细菌(AOB)与亚硝酸盐氧化菌(NOB)活性比分别为8.79,9.83和8.78.在间歇曝气条件下投加全程硝化污泥,可选择性抑制NOB、富集AOB,提高AOB与NOB的活性比,利于稳定短程硝化效果,为AnAOB提供稳定的基质,且短周期分批次投加可降低外源硝化污泥...  相似文献   

18.
硝化细菌AOB与NOB衰减速率实验测定   总被引:5,自引:2,他引:3  
污水生物处理过程中由于硝化反应分两步进行,因而对于硝化细菌的衰减速率也应该分别测定.通过实验测定了氨氮氧化细菌(AOB)和亚硝酸氮氧化细菌(NOB)在好氧饥饿状态下的衰减速率,实验结果显示,AOB和NOB具有不同的衰减特征.前者在衰减过程中其活性匀速下降,而后者的活性则是先迅速下降再平缓降低,通过对比分析还发现,SBR系统中AOB和NOB的衰减速率差异较大,而在常规活性污泥系统中AOB和NOB的衰减速率基本相当.  相似文献   

19.
Dissolved oxygen (DO) concentration is regarded as one of the crucial factors to influence partial nitrification process. However, achieving and keeping stable partial nitrification under different DO concentrations were widely reported. The mechanism of DO concentration influencing partial nitrification is still unclear. Therefore, in this study two same sequencing batch reactors (SBRs) cultivated same seeding sludge were built up with real-time control strategy. Different DO concentrations were controlled in SBRs to explore the effect of DO concentration on the long-term stability of partial nitrification process at room temperature. It was discovered that ammonium oxidation rate (AOR) was inhibited when DO concentration decreased from 2.5 to 0.5 mg/L. The abundance of Nitrospira increased from 1011.5 to 1013.7 copies/g DNA, and its relative percentage increased from 0.056% to 3.2% during 190 operational cycles, causing partial nitrification gradually turning into complete nitrification process. However, when DO was 2.5 mg/L the abundance of Nitrospira was stable and AOB was always kept at 1010.7 copies/g DNA. High AOR was maintained, and stable partial nitrification process was kept. Ammonia oxidizing bacteria (AOB) activity was significantly higher than nitrite oxidizing bacteria (NOB) activity at DO of 2.5 mg/L, which was crucial to maintain excellent nitrite accumulation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号