首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legitimizing Fluvial Ecosystems as Users of Water: An Overview   总被引:6,自引:0,他引:6  
We suggest that fluvial ecosystems are legitimate users of water and that there are basic ecological principles guiding the maintenance of long-term ecological vitality. This article articulates some fundamental relationships between physical and ecological processes, presents basic principles for maintaining the vitality of fluvial ecosystems, identifies several major scientific challenges and opportunities for effective implementation of the basic ecological principles, and acts as an introduction to three specific articles to follow on biodiversity, biogeochemistry, and riparian communities. All the objectives, by necessity, link climate, land, and fresh water. The basic principles proposed are: (1) the natural flow regime shapes the evolution of aquatic biota and ecological processes, (2) every river has a characteristic flow regime and an associated biotic community, and (3) aquatic ecosystems are topographically unique in occupying the lowest position in the landscape, thereby integrating catchment-scale processes. Scientific challenges for the immediate future relate to quantifying cumulative effects, linking multidisciplinary knowledge and models, and formulating effective monitoring and assessment procedures. Additionally, forecasting the ecological consequences of changing water regimes is a fundamental challenge for science, especially as environmental issues related to fresh waters escalate in the next two to three decades.  相似文献   

2.
ABSTRACT: An attempt was made to review all available data on the extent and status of riparian ecosystems in the U.S.A. This report presents a synthesis of the findings, including some estimates of how much land was originally covered by woody riparian vegetation, and how much remains in that condition today. A synopsis of information is presented on the status of riparian ecosystems in each of 10 regions: California, Pacific Northwest, Rocky Mountain, Arid Southwest, Plains-Grasslands, Lake States, Corn Belt, Mississippi Delta, Northeast-Appalachian, and Southeast. Woody riparian plant communities once covered an estimated 75 to 100 million acres of land in the contiguous 48 states. Mankind has converted at least two-thirds of that nationwide acreage to other non-forest land uses and it is estimated that only 25 to 35 million acres of riparian plant communities remain in a near natural condition. Across the country, loss of riparian acreages is directly attributable to water resource development (especially channel modification and water impoundment), floodplain clearing for agriculture, and urbanization. In many states of the arid west, the midwest, and the lower Mississippi alluvial valley, riparian vegetation has been reduced in area by more than 80 percent. Riparian woodlands are one of this country's most heavily modified natural vegetation types.  相似文献   

3.
Between 1850 and 1970, rivers throughout Sweden were channelized to facilitate timber floating. Floatway structures were installed to streamline banks and disconnect flow to secondary channels, resulting in simplified channel morphologies and more homogenous flow regimes. In recent years, local authorities have begun to restore channelized rivers. In this study, we examined the effects of restoration on riparian plant communities at previously disconnected secondary channels of the Pite River. We detected no increase in riparian diversity at restored sites relative to unrestored (i.e., disconnected) sites, but we did observe significant differences in species composition of both vascular plant and bryophyte communities. Disconnected sites featured greater zonation, with mesic-hydric floodplain species represented in plots closest to the stream and mesic-xeric upland species represented in plots farthest from the stream. In contrast, restored sites were most strongly represented by upland species at all distances relative to the stream. These patterns likely result from the increased water levels in reconnected channels where, prior to restoration, upland plants had expanded toward the stream. Nonetheless, the restored fluvial regime has not brought about the development of characteristic flood-adapted plant communities, probably due to the short time interval (ca. 5 years) since restoration. Previous studies have demonstrated relatively quick responses to similar restoration in single-channel tributaries, but secondary channels may respond differently due to the more buffered hydrologic regimes typically seen in anabranching systems. These findings illustrate how restoration outcomes can vary according to hydrologic, climatic and ecological factors, reinforcing the need for site-specific restoration strategies.  相似文献   

4.
Continuing pressures from human activities have harmed the health of ocean ecosystems, particularly those near the coast. Current management practices that operate on one sector at a time have not resulted in healthy oceans that can sustainably provide the ecosystem services humans want and need. Now, adoption of ecosystem-based management (EBM) and coastal and marine spatial planning (CMSP) as foundational principles for ocean management in the United States should result in a more holistic approach. Recent marine biogeographical studies and benthic habitat mapping using satellite imagery, large-scale monitoring programs, ocean observation systems, acoustic and video techniques, landscape ecology, geographic information systems, integrated databases, and ecological modeling provide information that can support EBM, make CMSP ecologically meaningful, and contribute to planning for marine biodiversity conservation. Examples from coastal waters along the northeast coast of the United States from Delaware Bay to Passamaquoddy Bay, Maine, illustrate how benthic biogeography and bottom seascape diversity information is a useful lens through which to view EBM and CMSP in nearshore waters. The focus is on benthic communities, which are widely used in monitoring programs and are sensitive to many stresses from human activities.  相似文献   

5.
As human influences fragment native communities and ecosystems, remaining land must be better managed to conserve many elements of biodiversity. Much of this land is privately held, yet traditional private land-use management practices often further diminish biodiversity by promoting favored or edge-adapted species. Today, private land stewards are increasingly aware of and concerned about biodiversity, but little guidance exists for them to make land-use decisions incorporating principles and knowledge from conservation biology. Consequently, most management strategies are highly subjective. This article addresses that problem by introducing current conservation wisdom to management and use of private lands. The result is a model program for developing land management plans, with the goal of maintaining viable populations and natural distributions of native species and communities from a landscape perspective. The program establishes a protocol for classifying sites according to the importance of their species, communities, and other elements to global and regional biodiversity. These site classifications are based on the management objectives necessary to maintain important elements. Once managers classify a site, the program provides management standards, general stewardship principles, examples of land management strategies, and basic monitoring and evaluation procedures.  相似文献   

6.
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity.  相似文献   

7.
This article discusses the ecological and cultural criteria underlying the management practices for protected areas in France. It examines the evolution of French conservation from its roots in the 19th century, when it focused on the protection of scenic landscapes, to current times when the focus is on the protection of biodiversity. However, biodiversity is often socially defined and may not represent an ecologically sound objective for conservation. In particular, we question the current approach to protecting a specific type of biodiversity that is at the basis of traditional landscape but does not value systems that are left to develop naturally (i.e., without significant human intervention). We present several examples of current attempts in France and Europe to managing traditional ecosystems and then discuss the values that exist in systems that develop naturally. We feel the latter systems often have much to offer in terms of biodiversity as well as providing important sites for the study of dynamic ecological communities in an ever-changing world.  相似文献   

8.
ABSTRACT. Management of aquatic ecosystems requires a clear understanding of the goals to be achieved, appropriate information and the means to achieve the goals. Control measures applied to aquatic ecosystems, in the absence of information on the condition of the system, are apt to be inappropriate and thus may overprotect the receiving system at times and underprotect it at other times since the ability of ecosystems to receive wastes is not constant. A major determinant of the effectiveness and efficiency of ecological quality control is the lag time in the feedback of information. If the lag is too great, the control measures may repeatedly overshoot or undershoot the desired goal. Present techniques for measuring the responses of aquatic organisms and communities require days or weeks, whereas information for ecosystem quality control and prevention of ecological crises should be generated in minutes or hours as is the case for other quality control systems. Two biological monitoring systems have been developed to generate information rapidly. One system measures changes in the movement and breathing of fish in order to provide an early warning of developing toxicity in the wastes of an industrial plant. The other system measures changes in the diversity of algal comunities in streams by means of laser holography. The incorporation and use of these systems in industrial plants is discussed.  相似文献   

9.
A Vegetation-Based Method for Ecological Diagnosis of Riverine Wetlands   总被引:2,自引:0,他引:2  
/ The management of riverine wetlands, recognized as a major component of biodiversity in fluvial hydrosystems, is problematic. Preservation or restoration of such ecosystems requires a method to assess the major ecological processes operating in the wetlands, the sustainability of the aquatic stage, and the restoration potential of each riverine wetland. We propose a method of diagnosis based on aquatic macrophytes and helophytes. Plant communities are used because they are easy to survey and provide information about (1) the origin of a water supply (i.e., groundwater, seepage, or surface river water) and its nutrient content, (2) effects of flood disturbances, and (3) terrestrialization processes. The novelty of the method is that, in contrast to available typologies, it is based on the interference of gradients resulting from several processes, which makes it possible to predict wetland sustainability and restoration potential. These predictions result from knowledge of the processes involved in terrestrialization, i.e., the influence of flood disturbances, occurrence of groundwater supplies, trophic degree, and water permanency of the habitat during a yearly cycle. The method is demonstrated on five different river systems.  相似文献   

10.
ABSTRACT: This study was conducted in the Klamath Basin of southwestern Oregon to evaluate the dependency of riparian plant communities upon infrequent flooding. Plant communities were sampled with 1 m2 quadrats along established cross‐sections. Data collected for purposes of hydraulic modeling included channel and floodplain elevations (i.e., cross‐sectional profiles) and water surface elevations associated with specific discharges. The elevational distribution of hydrophytic plant communities relative to modeled return periods provided the basis for establishing relationships between these variables for nine sites. Results indicate that, on average, a peak flow frequency of 4.6 years (range of 3.1 to 7.6 years) was needed to sustain riparian plant communities at seven of nine sites. At two sites, results indicated return periods of more than 25 years were needed; these results possibly were influenced by local geomorphic conditions (a narrow steep channel in one case and an incised channel in the other). Overall, these results tend to confirm a strong dependency of riparian plant communities on overbank flows.  相似文献   

11.
The protection of biological diversity (hereafter biodiversity) is considered one of the fundamental goals for the sustainable management of ecological systems. This paper examines how existing levels of biodiversity influence ecosystem capabilities at the local level. Specifically, it tests the effects of biodiversity and the degree of threat to biodiversity on the quality of local comprehensive plans in Florida as measured by the ability to manage ecosystems. Regression analysis indicates that high biodiversity does not stimulate planners to adopt higher quality plans. Instead, human disturbance or threats to existing levels of biodiversity are the most significant factors in driving ecosystem plan quality. Based on the results, the paper discusses implications for policy and suggests recommendations to improve proactive planning practices associated with managing ecological systems over the long term.  相似文献   

12.
The Contribution of Headwater Streams to Biodiversity in River Networks1   总被引:1,自引:0,他引:1  
Abstract: The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to headwaters at particular seasons or life stages. Movement by migrants links headwaters with downstream and terrestrial ecosystems, as do exports such as emerging and drifting insects. We review the diversity of taxa dependent on headwaters. Exemplifying this diversity are three unmapped headwaters that support over 290 taxa. Even intermittent streams may support rich and distinctive biological communities, in part because of the predictability of dry periods. The influence of headwaters on downstream systems emerges from their attributes that meet unique habitat requirements of residents and migrants by: offering a refuge from temperature and flow extremes, competitors, predators, and introduced species; serving as a source of colonists; providing spawning sites and rearing areas; being a rich source of food; and creating migration corridors throughout the landscape. Degradation and loss of headwaters and their connectivity to ecosystems downstream threaten the biological integrity of entire river networks.  相似文献   

13.
14.
15.
Bartholow, John M., 2010. Constructing an Interdisciplinary Flow Regime Recommendation. Journal of the American Water Resources Association (JAWRA) 1-15. DOI: 10.1111/j.1752-1688.2010.00461.x Abstract: It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river’s natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river’s channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river.  相似文献   

16.
Land uses such as forestry and agriculture are presumed to degrade the biodiversity of riparian wetlands in the northern temperate regions of the United States. In order to improve land use decision making in this landscape, floral and faunal communities of 15 riparian wetlands associated with low-order streams were related to their surrounding land cover to establish which organismal groups are affected by anthropogenic disturbance and whether these impacts are scale-specific. Study sites were chosen to represent a gradient of disturbance. Vascular plants of wet meadow and shrub carr communities, aquatic macro-invertebrates, amphibians, fish and birds were surveyed, and total abundance, species richness and Shannon diversity were calculated. For each site, anthropogenic disturbances were evaluated at local and landscape scales (500, 1000, 2500 and 5000 m from the site and the site catchment) from field surveys and a geographic information system (GIS). Land use data were grouped into six general land use types: urban, cultivated, rangeland, forest, wetland and water. Shrub carr vegetation, bird and fish diversity and richness generally decrease with increasing cultivation in the landscape. Amphibian abundance decreases and fish abundance increases as the proportions of open water and rangeland increases; bird diversity and richness increase with forest and wetland extent in the landscape. Wet meadow vegetation, aquatic macro-invertebrates, amphibians and fish respond to local disturbances or environmental conditions. Shrub carr vegetation, amphibians and birds are influenced by land use at relatively small landscape scales (500 and 1000 m), and fish respond to land use at larger landscape scales (2500, 5000 m and the catchment). Effective conservation planning for these riparian wetlands requires assessment of multiple organismal groups, different types of disturbance and several spatial scales.1998 Academic Press  相似文献   

17.
This paper presents key challenges in modeling water quality processes of riparian ecosystems: How can the spatial and temporal extent of water and solute mixing in the riparian zone be modeled? What level of model complexity is justified? How can processes at the riparian scale be quantified? How can the impact of riparian ecosystems be determined at the watershed scale? Flexible models need to be introduced that can simulate varying levels of hillslope‐riparian mixing dictated by topography, upland and riparian depths, and moisture conditions. Model simulations need to account for storm event peak flow conditions when upland solute loadings may either bypass or overwhelm the riparian zone. Model complexity should be dictated by the level of detail in measured data. Model algorithms need to be developed using new macro‐scale and meso‐scale experiments that capture process dynamics at the hillslope or landscape scales. Monte Carlo simulations should be an integral part of model simulations and rigorous tests that go beyond simple time series, and point‐output comparisons need to be introduced. The impact of riparian zones on watershed‐scale water quality can be assessed by performing simulations for representative hillsloperiparian scenarios.  相似文献   

18.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

19.
Abstract:  This article reports on a survey of ranch owners in high amenity areas in southwestern Montana that have experienced marked ownership change over the last two decades. Specifically, we focus on findings from a set of questions targeting water resource and riparian area management. After reviewing the results, we consider how new owners may be managing water resources differently than longtime owners and what the ecological implications of this shift in management might be for Montana’s prized wild fisheries. Uses more closely associated with new owners than with longtime owners include water reallocation to instream uses, aquatic and riparian ecosystem restoration, and fish pond construction. These uses have both positive and negative impacts on the region’s fisheries. Our findings suggest that current laws and institutions guiding the management of water resources and the aquatic and riparian ecosystems they support may not be adequate to address emerging conservation opportunities and challenges.  相似文献   

20.
Ecological risk assessment provides a methodology for evaluating the threats to ecosystem function associated with environmental perturbations or stressors. This report documents the development of a conceptual model for assessing the ecological risk to the water quality function (WQF) of bottomland hardwood riparian ecosystems (BHRE) in the Tifton-Vidalia upland (TVU) ecoregion of Georgia. Previus research has demonstrated that mature BHRE are essential to maintaining water quality in this portion of the coastal plain. The WQF of these ecosystems is considered an assessment endpoit—an ecosystem function or set of functions that society chooses to value as evidenced by laws, regulations, or common usage. Stressors operate on ecosystems at risk through an exposure scenario to produce ecological effects that are linked to loss of the desired function or assessment end point. The WQF of BHRE is at risk because of the ecological and environmental quality effects of a suite of chemical, physical, and biological stressors. The stressors are related to nonpoint source pollution from adjacent land uses, especially agriculture; the conversion of BHRE to other land uses; and the encroachment of domestic animals into BHRE. Potential chemical, physical, and biological stressors to BHRE are identified, and the methodology for evaluating appropriate exposure scenarios is discussed. Field-scale and watershed-scale measurement end points of most use in assessing the effects of stressors on the WQF are identified and discussed. The product of this study is a conceptual model of how risks to the WQF of BHRE are produced and how the risk and associated uncertainties can be quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号