首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the event of a natural or anthropogenic disturbance, environmental resource managers require a reliable tool to quickly assess the spatial extent of potential damage to the seagrass resource. The temporal availability of the Landsat 5 Thematic Mapper (TM) imagery provided a suitable option to detect and assess damage of the submerged aquatic vegetation (SAV). This study examined Landsat TM imagery classification techniques to create two-class (SAV presence/absence) and three-class (SAV estimated coverage) SAV maps of the seagrass resource. The Mahalanobis Distance method achieved the highest overall accuracy (86%) and validation accuracy (68%) for delineating the seagrass resource (two-class SAV map). The Maximum Likelihood method achieved the highest overall accuracy (74%) and validation accuracy (70%) for delineating the seagrass resource three-class SAV map. The Landsat 5 TM imagery classification provided a seagrass resource map product with similar accuracy to the aerial photointerpretation maps (validation accuracy 71%). The results support the application of remote sensing methods to analyze the spatial extent of the seagrass resource.  相似文献   

2.
Land cover change can be caused by human-induced activities and natural forces. Land cover change in watershed level has been a main concern for a long time in the world since watersheds play an important role in our life and environment. This paper is focused on how to apply Landsat Multi-Spectral Scanner (MSS) satellite image of 1973 and Landsat Thematic Mapper (TM) satellite image of 2001 to determine the land cover changes of coastal watersheds from 1973 to 2001. GIS and remote sensing are integrated to derive land cover information from Landsat satellite images of 1973 and 2001. The land cover classification is based on supervised classification method in remote sensing software ERDAS IMAGINE. Historical GIS data is used to replace the areas covered by clouds or shadows in the image of 1973 to improve classification accuracy. Then, temporal land cover is utilized to determine land cover change of coastal watersheds in southern Guam. The overall classification accuracies for Landsat MSS image of 1973 and Landsat TM image of 2001 are 82.74% and 90.42%, respectively. The overall classification of Landsat MSS image is particularly satisfactory considering its coarse spatial resolution and relatively bad data quality because of lots of clouds and shadows in the image. Watershed land cover change in southern Guam is affected greatly by anthropogenic activities. However, natural forces also affect land cover in space and time. Land cover information and change in watersheds can be applied for watershed management and planning, and environmental modeling and assessment. Based on spatio-temporal land cover information, the interaction behavior between human and environment may be evaluated. The findings in this research will be useful to similar research in other tropical islands.  相似文献   

3.
Although remote sensing is increasingly in use for habitat mapping, traditional image classification methods tend to suffer shortcomings due to non-normality of spectral signatures, as well as overlapping and heterogeneity in radiometric responses of natural and semi natural vegetation. Methods using non-parametric classifiers and object-oriented analysis have been suggested as possible solutions for overcoming these limitations. In this paper, we aimed at evaluating the performance of some of these techniques for the European Natura 2000 network of protected areas habitats mapping. For this purpose, we tested different methods of supervised image classification in the Northern Mountains of Galicia, Spain, an area included in the Natura 2000 network, which is characterized by a highly heterogeneous landscape. Methods involved the use of maximum likelihood and nearest neighbour decision rules in per-pixel and per-object classification analyses on Landsat TM imagery. Per-object classifications were completed using the segment mean and segment means plus standard deviation feature spaces. The results showed the existence of significant differences in the accuracies for the different methodologies, their strengths and weaknesses and identified the most adequate approach for habitat mapping. Analyses pointed out that significant improvements in accuracy were achieved only under certain combinations of per-object analysis, non-parametric classifiers and high dimensionality feature space.  相似文献   

4.
This study compared performance of four change detection algorithms with six vegetation indices derived from pre- and post-Katrina Landsat Thematic Mapper (TM) imagery and a composite of the TM bands 4, 5, and 3 in order to select an optimal remote sensing technique for identifying forestlands disturbed by Hurricane Katrina. The algorithms included univariate image differencing (UID), selective principal component analysis (PCA), change vector analysis (CVA), and postclassification comparison (PCC). The indices consisted of near-infrared to red ratios, normalized difference vegetation index, Tasseled Cap index of greenness, brightness, and wetness (TCW), and soil-adjusted vegetation index. In addition to the satellite imagery, the “ground truth” data of forest damage were also collected through field investigation and interpretation of post-Katrina aerial photos. Disturbed forests were identified by classifying the composite and the continuous change imagery with the supervised classification method. Results showed that the change detection techniques exerted apparent influence on detection results with an overall accuracy varying between 51% and 86% and a kappa statistics ranging from 0.02 to 0.72. Detected areas of disturbed forestlands were noticeable in two groups: 180,832–264,617 and 85,861–124,205 ha. The landscape of disturbed forests also displayed two unique patterns, depending upon the area group. The PCC algorithm along with the composite image contributed the highest accuracy and lowest error (0.5%) in estimating areas of disturbed forestlands. Both UID and CVA performed similarly, but caution should be taken when using selective PCA in detecting hurricane disturbance to forests. Among the six indices, TCW outperformed the other indices owing to its maximum sensitivity to forest modification. This study suggested that compared with the detection algorithms, proper selection of vegetation indices was more critical for obtaining satisfactory results.  相似文献   

5.
In recent years, land use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. This research utilizes the integrated remote sensing and geographic information systems (GIS) in the southern part of Iraq (Basrah Province was taken as a case) to monitor, map, and quantify the environmental change using a 1:250,000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation land, sand land, urban area, unused land, and water bodies. Supervised classification and normalized difference buildup index, normalized difference vegetation index, normalized difference bare land index, the normalized differential water index, crust index (CI) algorithms, and change detection techniques were adopted in this research and used, respectively, to retrieve its class boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. The results showed that the urban area, sand lands, and bare lands had increased by the rate of 1.2%, 0.8%, and 0.4% per year, with area expansion from 3,299.1, 4,119.1 km2, and 3,201.9 km2 in 1990 to 3,794.9, 4,557.7, and 3,351.7 km2 in 2003, respectively. While the vegetation cover and water body classes were about 43.5% in 1990, the percentage decreased to about 39.6% in 2003. This study demonstrates the effectiveness of the remote sensing and GIS technologies in detecting, assessing, mapping, and monitoring the environmental changes.  相似文献   

6.
This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.  相似文献   

7.
8.
A cost-effective method was developed to map fire scars on Quicklooks of Landat TM imagery. The method was compared with a full resolution Landsat image using visual interpretation and supervised classification using the Maximum Likelihood procedure, resulting in a high degree of agreement between methods. A long time series of fire scars was developed using all available Landsat Quicklooks between 1989 and 2001 for an area of 63000 sq km in north-east Namibia. Between 27 and 51% of the study area burned annually, while only 10% of the area did not burn between 1989 and 2001. Not-burned areas were mainly settled areas and permanent wetlands. 33% of the area burned between 5 and 7 times during the 13 years indicating a high frequency overall. Rainfall and livestock had little influence on burned areas. In 1996 formal fire management started in a portion of the study area consisting of building firebreaks and holding awareness programs. A comparison of burned areas before and after the intervention started allowed evaluating its effectiveness. The area where the formal fire management program was undertaken showed a significant decrease in burned area. It is suggested that awareness campaigns rather than firebreaks contributed to this decrease. Selected tree population data were compared with fire frequencies. Differences in tree occurrence, regeneration, and stem diameter distributions between low and high fire frequencies could be detected and explained with known responses of the species to fire. This suggests that the observed time series is representative of a long-term fire regime in the area.  相似文献   

9.
This study assessed land cover (LC) changes in Kahramanmara? (K.Mara?) and its environs by using multitemporal Landsat and ASTER imagery, respectively belong to 1989, 2000 and 2004. A priori defined nine land cover classes in the classification scheme were urban and built-up, forest, sparsely vegetated areas, grassland, vegetated stream beds, unvegetated stream beds, bare areas, crop fields, and water bodies. Individual classifications were employed using the combination of both unsupervised and supervised classification methods. Iterative Self Organizing Data Analysis (ISODATA) was used to reduce spectral variation in the scenes arising from complex pattern of crop fields. Maximum Likelihood classifier was used in the LC classification of the individual images. Image pairs of consecutive dates were compared by overlaying the thematic LC maps and cross-tabulating the LC statistics. Urbanization and expansion of agriculture were the major reasons for the dramatic LC conversions. The amount of conversion from crop fields to water occurred as large as 927.67 ha, accounting for 73% of the total land-to-water conversion. Conversions to agriculture have mainly been occurred from grasslands and sparsely vegetated areas as large as 1,314.95 and 1,325.84 ha, respectively. Urban coverage doubled in this period as a result of 1,443.45 ha of increase. Urban area increased in the second period from 2,920 to 3,526 ha. Conversions to agriculture occurred at high amounts. A total of 1,075.79 ha area changed from sparsely vegetated areas to crop fields. A landscape-level environmental monitoring scheme based on satellite remote sensing was proposed for effective environmental resource management.  相似文献   

10.
Land cover of the Earth is changing dramatically because of human activities. Information about changes is useful for management of natural resources. Rapid land cover changes have taken place in many coastal areas of Turkey over the last two decades due to urbanization and land degradation. In this paper, land cover change dynamics were investigated by the combined use of satellite remote sensing and geographical information systems. The main objective of the study was to determine land-cover transition rates among land cover types in coastal areas of Turkey. A time series of Landsat TM and ASTER images were used to gather land cover change data of the coastal line of Candarli Bay, Izmir, Turkey. The images were classified using supervised classification and a post-classification comparison approach was used in change detection. The results show significant increase in urban areas but decrease in semi natural and agricultural areas.  相似文献   

11.
遥感技术在察布查尔县土壤侵蚀调查中的应用   总被引:2,自引:0,他引:2  
彭艳平  杨磊  张圣凯 《干旱环境监测》2010,24(3):148-152,157
依据陆地卫星TM遥感影像资料,在ERDAS软件下,通过室内判读与野外调查相结合的方法,解译出土地利用类型图、植被覆盖度图、坡度图。在建立知识库的基础上,利用土壤侵蚀专家分类系统,快速获得察布查尔县土壤侵蚀分类分级状况,为今后该区域的水土保持工作提供参考和依据。  相似文献   

12.
A continuing discussion in the field of ecology and forest management concerns the implications of clearcutting as a functional replacement for wildfire in disturbance-driven ecosystems. At the landscape level, spatial pattern has been shown to influence many ecologically important processes. Satellite imagery allows the evaluation of structural patterns created by alternative forest management activities at broad scales. In Northwestern Ontario, both clearcutting and wildfire have occurred over large contiguous areas. Spatial characteristics including composition, patch size, patch shape, and interspersion were calculated from classified Landsat Thematic Mapper (TM) data at two thematic scales and used to compare post-wildfire and clearcut landscapes. Patches in the clearcut landscape were found to be larger in size, and had a more irregular shape than those in the wildfire landscape. Differences in landscape structure were much more pronounced at broad scales than at fine thematic scales.  相似文献   

13.
Classifying multi-temporal image data to produce thematic maps and quantify land cover changes is one of the most common applications of remote sensing. Mapping land cover changes at the regional level is essential for a wide range of applications including land use planning, decision making, land cover database generation, and as a source of information for sustainable management of natural resources. Land cover changes in Lake Hawassa Watershed, Southern Ethiopia, were investigated using Landsat MSS image data of 1973, and Landsat TM images of 1985, 1995, and 2011, covering a period of nearly four decades. Each image was partitioned in a GIS environment, and classified using an unsupervised algorithm followed by a supervised classification method. A hybrid approach was employed in order to reduce spectral confusion due to high variability of land cover. Classification of satellite image data was performed integrating field data, aerial photographs, topographical maps, medium resolution satellite image (SPOT 20 m), and visual image interpretation. The image data were classified into nine land cover types: water, built-up, cropland, woody vegetation, forest, grassland, swamp, bare land, and scrub. The overall accuracy of the LULC maps ranged from 82.5 to 85.0 %. The achieved accuracies were reasonable, and the observed classification errors were attributable to coarse spatial resolution and pixels containing a mixture of cover types. Land cover change statistics were extracted and tabulated using the ERDAS Imagine software. The results indicated an increase in built-up area, cropland, and bare land areas, and a reduction in the six other land cover classes. Predominant land cover is cropland changing from 43.6 % in 1973 to 56.4 % in 2011. A significant portion of land cover was converted into cropland. Woody vegetation and forest cover which occupied 21.0 and 10.3 % in 1973, respectively, diminished to 13.6 and 5.6 % in 2011. The change in water body was very peculiar in that the area of Lake Hawassa increased from 91.9 km2 in 1973 to 95.2 km2 in 2011, while that of Lake Cheleleka whose area was 11.3 km2 in 1973 totally vanished in 2011 and transformed into mud-flat and grass dominated swamp. The “change and no change” analysis revealed that more than one third (548.0 km2) of the total area was exposed to change between 1973 and 2011. This study was useful in identifying the major land cover changes, and the analysis pursued provided a valuable insight into the ongoing changes in the area under investigation.  相似文献   

14.
The recent decline in the condition of coral reef communities worldwide has fueled the need to develop innovative assessment tools to document coral abundance and distribution rapidly and effectively. While most monitoring programs rely primarily on data collected in situ by trained divers, digital photographs and video are used increasingly to extract ecological indicators, provide a permanent visual record of reef condition, and reduce the time that divers spend underwater. In this study, we describe the development and application of a video-based reef survey methodology based on an algorithm for image registration and the estimation of image motion and camera trajectory. This technology was used to construct two-dimensional, spatially accurate, high-resolution mosaics of the reef benthos at a scale of up to 400 m2. The mosaics were analyzed to estimate the size and percent cover of reef organisms and these ecological indicators of reef condition were compared to similar measurements collected by divers to evaluate the potential of the mosaics as monitoring tools. The ecological indicators collected by trained divers compared favorably with those measured directly from the video mosaics. Five out of the eight categories chosen (hard corals, octocorals, Palythoa, algal turf, and sand) showed no significant differences in percent cover based on survey method. Moreover, no significant differences based on survey method were found in the size of coral colonies. Lastly, the capability to extract the same reef location from mosaics collected at different times proved to be an important tool for documenting change in coral abundance as the removal of even small colonies (<10 cm in diameter) was easily documented. The two-dimensional video mosaics constructed in this study can provide repeatable, accurate measurements on the reef-plot scale that can complement measurements on the colony-scale made by divers and surveys conducted at regional scales using remote sensing tools.  相似文献   

15.
Integrated ecosystem assessment initiatives are important steps towards a global biodiversity observing system. Reliable earth observation data are key information for tracking biodiversity change on various scales. Regarding the establishment of standardized environmental observation systems, a key question is: What can be observed on each scale and how can land cover information be transferred? In this study, a land cover map from a dry semi-arid savanna ecosystem in Namibia was obtained based on the UN LCCS, in-situ data, and MODIS and Landsat satellite imagery. In situ botanical relevé samples were used as baseline data for the definition of a standardized LCCS legend. A standard LCCS code for savanna vegetation types is introduced. An object-oriented segmentation of Landsat imagery was used as intermediate stage for downscaling in-situ training data on a coarse MODIS resolution. MODIS time series metrics of the growing season 2004/2005 were used to classify Kalahari vegetation types using a tree-based ensemble classifier (Random Forest). The prevailing Kalahari vegetation types based on LCCS was open broadleaved deciduous shrubland with an herbaceous layer which differs from the class assignments of the global and regional land-cover maps. The separability analysis based on Bhattacharya distance measurements applied on two LCCS levels indicated a relationship of spectral mapping dependencies of annual MODIS time series features due to the thematic detail of the classification scheme. The analysis of LCCS classifiers showed an increased significance of life-form composition and soil conditions to the mapping accuracy. An overall accuracy of 92.48% was achieved. Woody plant associations proved to be most stable due to small omission and commission errors. The case study comprised a first suitability assessment of the LCCS classifier approach for a southern African savanna ecosystem.  相似文献   

16.
Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.  相似文献   

17.
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.  相似文献   

18.
Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.  相似文献   

19.
A study was conducted in central Texas to determine the potential of using remote sensing technology to distinguish Ashe juniper (Juniperus ashei Buchholz) infestations on rangelands. Plant canopy reflectance measurements showed that Ashe juniper had lower near-infrared reflectance than other associated woody plant species and lower visible reflectance than mixed herbaceous species in spring and summer. Ashe juniper could be distinguished on color-infrared aerial photographs acquired in March, April, June, and August and on QuickBird false color satellite imagery obtained in June, where it had a distinct dark reddish-brown tonal response. Unsupervised classification techniques were used to classify aerial photographic and satellite imagery of study sites. An accuracy assessment performed on a computer classified map of a photographic image showed that Ashe juniper had producer's and user's accuracies of 100% and 92.9%, respectively, whereas an accuracy assessment performed on a classified map of a satellite image of the same site showed that Ashe juniper had producer's and user's accuracies of 94.1% and 88.1%, respectively. Accuracy assessments performed on classified maps of satellite images of two additional study sites showed that Ashe juniper had producer's and user's accuracies that ranged from 87.1% to 96.4%. These results indicate that both color-infrared photography and false color satellite imagery can be used successfully for distinguishing Ashe juniper infestations.  相似文献   

20.
Knowledge and detecting impacts of human activities on the coastal ecosystem is an essential management requirement and also very important for future and proper planning of coastal areas. Moreover, documentation of these impacts can help in increasing public awareness about side effects of unsustainable practices. Analysis of multidate remote sensing data can be used as an effective tool in environmental impact assessment (EIA). Being synoptic and frequent in coverage, multidate data from Landsat and other satellites provide a reference record and bird’s eye viewing to the environmental situation of the coastal ecosystem and the associated habitats. Furthermore, integration of satellite data with field observations and background information can help in decision if a certain activity has caused deterioration to a specific habitat or not. The present paper is an attempt to utilize remote sensing data for assessment impacts of some human activities on the major sensitive habitats of the NW Egyptian Red Sea coastal zone, definitely between Ras Gemsha and Safaga. Through multidate change analysis of Landsat data (TM & ETM+ sensors), it was possible to depict some of the human infringements in the area and to provide, in some cases, exclusive evidences for the damaging effect of some developmental activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号