首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Seasonal changes in the free glycerol level in body parts of the adult barnacle Balanus balanoides have been followed during the 1969 season. Glycerol levels were highest in winter when the barnacles were most cold-tolerant and lowest in summer when they were least cold-tolerant. It is suggested that glycerol, and possibly other solutes, may be concentrated in the blood of B. balanoides, thus promoting supercooling and reducing the amount of ice formed at sub-zero temperatures.  相似文献   

2.
The survival of Orchestia chiliensis (Milne Edwards, 1840) was investigated at salinities between 0.3 and 68 and constant or 10 C° cyclic temperatures between 5° and 25° C. Mortality increased with age, temperature and at salinity extremes. Small individuals show little seasonal acclimatisation apart from increased thermal tolerance at the highest exposure temperature. Larger individuals show a lateral shift in the mortality curve to the right in summer, giving increased survival at most salinities. Salinity had less effect on amphipods in cyclic regimes and survival was similar in 5° to 15° C and 10° to 20° C cycles. Mortality of larger individuals was higher in the 15° to 25° C cycle, but seasonal acclimatisation gave increased resistance at all fluctuating temperatures during the summer. Mortality in cyclic temperatures was higher than at similar constant temperatures. O. chiliensis does not actively evade immersion and diel temperature changes of 10 C° represent an important stress factor. This would affect all life stages and influence field populations both in the winter and the summer.  相似文献   

3.
R. Kenny 《Marine Biology》1969,4(3):219-223
The resistance to high temperatures of two species of intertidal tube-dwelling polychaete worms has been tested to show seasonal and geographic variations. The summer 50% survival temperature at Beaufort, North Carolina, was 42.5 °C for Diopatra cuprea (Bosc) and 40.5 °C for Clymenella torquata (Leidy). Winter 50% survival temperatures for both species at Beaufort were approximately 4.0 C° lower. Both species showed a geographic difference in 50% survival temperature of more than 4.0 C° between North Carolina and Massachusetts in summer. D. cuprea from the Mississippi coast showed a lower survival temperature, probably due to combined temperature and salinity effects. Laboratory acclimation of C. torquata from Beaufort at low temperatures, during summer months, produced experimental results similar to those from winter animals. The seasonal differences in temperature tolerance are phenotypic expressions of a physiological response which can be related to environmental temperature patterns.  相似文献   

4.
R. Gaudy  M. Pagano 《Marine Biology》1987,94(3):335-345
The reproduction of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, was studied in winter and spring 1978, under various temperature and salinity conditions, using Chlorella sp. and Amphidinium sp. as food. Maximum numbers of successive eggs sacs (9), eggs per sac (39.3) and total egg production per female (311) were recorded for the witner generation, only 4.8, 34.8 and 109, respectively, for the spring generation. In contrast, the number of eggs per female per day was highest (11.3) in the spring generation, which displayed a more rapid reproductive cycle. Despite strong individual variations in the rhythm of egg sac production and in abundance of eggs per sac, egg production was generally higher during the first third of adult life, attaining a maximum after production of the second or the third egg sac. The continuous presence of the males was necessary to assure complete fertilization of eggs throughout the whole life of adult females. Hatching rate displayed high individual variability, in particular for the spring generation, which had lower average hatching rates (between 0 and 26%, depending on salinity or temperature) than the winter generation (14 to 64%). These differences may be related to the ability of E. velox to produce resting eggs during spring, allowing the species to maintain itself in a temporary water milieu. Temperature significantly affected longevity and daily egg production of females; presence or absence of males did not affect these parameters. An increase in salinity from 20 to 30%. reduced longevity, number of egg sacs, and daily egg production in the winter generation, but not in the spring generation. The specific daily production of females during their adult life was calculated from the egg production:biomass ratio of females, in carbon units. In the winter generation, this ratio increased between 10° and 15°C compared to ratios between 15° and 20°C; the opposite was observed for the spring generation. The seasonal differences in the effects of temperature and salinity on reproduction could indicate an adaptation mechanism to the strongly thermal and haline seasonal fluctuations which characterize the habitat of Ex. velox (brackish waters, drying-up in summer). Larval mortality was high, except at 20%. S for the spring generation. The sex-ratio of the offspring was unaffected by variations in breeding conditions. Hatching time and development time of larvae could be described by two Blehrádek equations displaying close b and () coefficients. We calculated the energy balance of adult females from data obtained in a previous study on feeding and respiration in E. velox, and this is discussed in context with the egg production results. Net growth efficiency varied with algal concentration according to an asymptotic curve, reaching a maximum of 0.43 with Tetraselmis maculata as food or 0.53 with Amphidinium sp. Actual egg production rate obtained in the present study was in good agreement with that calculated by the difference between assimilated food and respiration expenses.  相似文献   

5.
The response of Aurelia aurita ephyrae to abrupt temperature and salinity differentials is expressed as changes in bell pulsation rates. Acute temperature rate-responses of Texas (USA) ephyrae reflect a reduced temperature sensitivity over a broad range (10° to 35°C), with a Q10 value of 0.97 between 20° and 25°C. The initial relationship between salinity change and pulsation rate is linear and direct. This pattern is disrupted after 24 h, with those ephyrae experiencing a salinity decrease pulsing significantly faster than those experiencing no change or an increase in salinity. This response to low salinities dissipates after 2 days. Holding osmotic pressure constant and disrupting ionic ratios has more of an immediate and persistent effect than solely decreasing salinity.  相似文献   

6.
Critical thermal maxima (CTM) were determined for winter flounder (Pseudopleuronectes americanus, Walbaum) and scup (Stenotomus chrysops, L.), acclimated to ambient water temperature or constant increments above ambient. The acclimation regimes simulated a natural environment by tracking the temperature fluctuations in Point Judith Pond, a small Rhode Island estuary. An elevation in CTM from 30.2° to 35.6°C was observed for scup as the mean acclimation temperature increased from 14.8° to 22.2°C. CTM for flounder increased from 26.4° to 32.4°C over an acclimation range of 4.2° to 23.0°C. The use of CTM studies for predicting the effects of heated effluents is discussed.  相似文献   

7.
The saltmarsh isopod Sphaeroma rugicauda (Leach) is subjected to widespread diurnal and seasonal temperature fluctuations under natural conditions. Laboratory studies on its activity show that there is a relationship between behaviour activity and exposure temperature between 2.5° and 25°C. Although S. rugicauda has no complex metabolic adaptations, this isopod is able to maintain a rate of aerial oxygen consumption which is similar to that in water within the temperature range 5° to 25°C. The responses of S. rugicauda to changes in environmental temperature are discussed in relation to the seasonal microdistribution of the isopod in the salt-marsh habitat.  相似文献   

8.
S. Patel  B. Patel 《Marine Biology》1985,85(3):245-252
The lysosomal marker enzymes, arylsulfatase and acid phosphatase, in a tropical burrowing arcid clam Anadara granosa L. have been found to exhibit seasonal variations. The activity of both enzymes decreased with increase in ambient temperature and fell with increase in salinity. Lysosomal latency for these enzymes, however, was not significantly affected by environmental parameters, including salinity, temperature, nutritional status, breeding season, etc. The physico-chemical characteristics of the habitat were found to induce reversible changes in the lysosomal latency and enzyme activity. Exposure to elevated temperature (T=7° to 8°C), towards the upper limit of its physiological tolerance, was found to labilize the lysosomes. The biochemical methods optimized for the demonstration of lysosomal stability under exposure to environmental stressors could also be extended to quantify the impact of various pollutants, including heavy metals, radionuclides, etc. at the subcellular level.  相似文献   

9.
The marine copepod Calanus hyperboreus accumulates large quantities of lipids and essential fatty acids during summer months in Northern oceans. However, few data exist regarding their winter fatty acid profiles, which could be informative regarding the use of lipids by C. hyperboreus to successfully survive and reproduce during times of ice-cover and limited food. The present study compared fatty acids of C. hyperboreus between summer (August 2007 and 2008) and winter (early April 2008 and 2009) in Cumberland Sound, Canada. Summer samples from both years had significantly higher ∑polyunsaturated fatty acids and unsaturation indices (based on μg fatty acid mg dry tissue−1) than winter samples and separated on a principal component analysis due to higher 18:2n-6, 18:4n-3, and 20:5n-3, consistent with phytoplankton consumption. Winter C. hyperboreus had significantly higher ∑monounsaturated fatty acids (MUFA) versus summer samples and separated on the principal component analysis due to higher proportions of 16:1n-7, 20:1n-9, and 22:1n-9, suggesting they were not actively feeding. Based on the seasonal fatty acid comparison, C. hyperboreus was catabolizing specific fatty acids (e.g. 20:5n-3), conserving others (e.g. 22:6n-3), and maintaining or increasing biosynthesis of certain MUFA (e.g. 18:1n-9) during winter. These findings provide insight into the seasonal strategy of acquisition (summer) and utilization (winter) of specific fatty acids by a key Arctic organism and could become important for monitoring changes in fatty acids associated with decreased ice-cover duration due to climate warming.  相似文献   

10.
Egg production and development rates of Centropages typicus (Krøyer) were studied in the laboratory under carying food and temperature conditions. Egg production rates in the laboratory ranged from 0 to 124 eggs female-1 d-1 and increased with food concentration up to a critical food concentration (Pc) above which egg production was constant. Egg production rates were influenced by temperature, with more eggs being produced at 15°C than at 10°C. Thalassiosira weisflogii and Prorocentrum micans were determined to be equally capable of supporting egg production at concentrations above Pc at 15°C. Rate of egg production was independent of adult female size when food and temperature were constant. Egg production rates of freshly captured females ranged from 0 to 188 eggs female-1 d-1 and were higher in April and May than in June or July. Hatching rates of eggs increased with increased temperature; 95% of the eggs at 15°C hatched within 48 h, while only 8% of the eggs at 10°C hatched within 48 h. Development rates, determined at 10°C in excess concentrations of T. weisflogii, were 23.0 d from egg release to copepodid state I, 27.0 d to stage II, 29.5 d to stage III, 32.2 d to stage IV, 38.5 d to stage V and 49 d to adulthood based on the average time required for 50% of the organisms in an experiment to attain a given stage. Adult males were usually observed 2 to 4 d before adult females, and therefore have a slightly faster rate of development. The effects of temperature, food type and food concentration on egg production and the seasonal appearances of diatoms in the New York Bight may account for the observed seasonal cycles in abundance of C. typicus in these coastal waters.  相似文献   

11.
We tested the effects of osmotic stress on survival, developmental rate, and level of HSPs on American horseshoe crab (Limulus polyphemus) embryos. Animals were maintained in the laboratory at an ambient salinity of 20 ppt and then exposed to 4-h osmotic shocks at salinities of 10, 30, 40, 50, and 60 ppt, with a control group at 20 ppt. Horseshoe crab embryos had 100% developmental success (defined as individuals reaching the first instar or trilobite larval stage) at all salinities. However, osmotic stresses, especially hyperosmotic conditions, slowed the rate of development. Embryos subjected to osmotic stress showed higher levels of HSP70 and HSP90 than control animals kept at a salinity of 20 ppt. HSPs are of value to horseshoe crab embryos in surviving the fluctuating salinities that are typical of estuarine beach habitats.  相似文献   

12.
Developing eggs of the winter flounder Pseudopleuronectes americanus (Walbaum) were exposed to 9 combinations of cadmium and salinity at 5° and 10°C. Overall mean times to 50% hatch ranged from 7.7 days at 10°C to 17.9 days at 5°C. Mean percentages of total hatches ranged from 50 to 100% for all treatment combinations. Response-surface analyses indicate percentages of viable hatches were generally lowest at 10% S and highest in the 25 to 30% S range. Regression analyses of viable hatch data show that at both temperatures cadmium significantly influenced viable hatch in all experiments. Viable hatch was also significantly influenced by the linear and quadratic effect of salinity in both tests at 5°C and in 2 of 3 tests at 10°C. The interaction between cadmium and salinity also significantly affected viable hatch at 10°C.  相似文献   

13.
The respiratory physiology of summer diapausing eggs of the neustonic copepodAnomalocera patersoni, maintained under constant temperature (13 °C) and light (12 h light:12 h dark) conditions, was characterized by a bell-shaped curve, with low O2 uptake levels at the beginning of dormancy. This was followed by a steady rise in O2 consumption with maximum levels of 0.002 l O2 embryo–1 h–1 70 d after spawning. A slow diminution in O2 uptake then occurred until Day 150 when minimum values of 0.0003 l O2 embryo–1 h–1 were recorded, coinciding with the hatching of the first embryos. Embryos continued to hatch asynchronously up to 360 d from the moment of egg laying. When eggs were subjected to 20 °C, the respiratory activity was almost three times higher than at 13 °C, even though both respiratory curves were similar. The elevated metabolism in eggs kept at 20 °C led to death of the embryos possibly due to a total depletion of metabolic reserves. ATP content also differed at the two temperatures. Diapause eggs kept at 20 °C showed no rapid rise in ATP content as opposed to those kept at 13 °C. The results of temperature shock experiments, in which eggs were first kept at winter temperatures for several weeks, after which the temperature was raised to 20 °C for another number of weeks prior to a second period of chilling at 13 °C, showed that as long as embryos were kept at 20 °C no hatching occurred. By contrast, hatching was observed after 10 d following the resumption of winter temperatures, suggesting that low environmental temperatures are an essential prerequisite for hatching of these eggs. The type of diapause inA. patersoni differs considerably from the one described in insects and in another neustonic copepod,Pontella mediterrana. In this case, there is a U-shaped respiratory curve with greatest O2 consumption prior to the onset or upon breaking of diapause. Differences in the two types of diapause seem to involve not only differences in O2 consumption levels but also in the sequence of metabolic changes with time and the metabolic requirements during sommer and winter dormancy.  相似文献   

14.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

15.
M. Pagano  R. Gaudy 《Marine Biology》1986,93(1):127-136
The respiration and excretion (ammonia and phosphate) of Eurytemora velox, a brackish copepod from temporary lakes of the south of France, were studied in 1978–1979 in relation to food ingestion, temperature and salinity. Suspensions of Tetraselmis maculata were used as food. Respiration was closely dependent on the quantity of the ingested food, displaying a linear relationship with a strong positive-slope coefficient. In most cases, the temperature effect on respiration and excretion was well described by a power-type equation (M=a b T , where M=metabolism and T=temperature) over a rather large temperature range. In some experiments, metabolism curves displayed a maximum at 20°C. The metabolismtem-temperature curves differed between successive experiments, depending on season and/or sampling area, perhaps as a result of different acclimatization processes developing in individuals from different generations and/or among geographically isolated populations. Salinity variations significantly affected respiration, but not excretion. Respiration increased in individuals placed in hypo- or hyper-salinity conditions for a period of 24 h. This inability for complete metabolic regulation is unexpected in a species from a habitat subjected to variable salinity, and may have resulted from a too short acclimatization time in the experiments.  相似文献   

16.
The energetics of feeding has been investigated in demersal fish with similar sedentary lifestyles from the Antarctic (Notothenia neglecta Nybelin), North Sea (Myoxocephalus scorpius L.) and Indian Ocean (Cirrhitichys bleekeri Bleeker). In general, the metabolic rates of fasting individuals were positively correlated with adaptation temperature: values for a standard 100 g fish (mg O2/h) were 3.3 for N. neglecta at around 0 °C, 2.7 for winter-acclimatized M. scorpius at 5 °C, 4.3 for summer-acclimatized M. scorpius at 15 °C, and 7.0 for C. bleekeri at 25 °C. In all species, following a single satiating meal, oxygen consumption increased to a peak of 2 to 3.5 times the fasting values. Maximum rates of oxygen consumption after feeding were several-fold higher in the warm-than in the cold-water species. After controlling for the effects of body mass and energy intake by analysis of covariance, the duration of the increase in metabolic rate, referred to as specific dynamic action (SDA), was found to be 3 to 4 times shorter in the warm- than in the cold-water fish, ranging from 57 h in C. bleekeri to 208 h in N. neglecta. In contrast, the SDA was not significantly different in the various species, corresponding to 15 to 23% of the energy ingested. Seasonal influences on metabolism and feeding were also studied in N. neglecta acclimated to simulated winter (-1.0 to-0.5 °C; 3 h light:21 h dark) or summer (0 to 0.9 °C; 21 h light:3 h dark) conditions. The metabolic rates of fasting and fed individuals, and the characteristics of the SDA were found to be independent of acclimation conditions. This suggests that N. neglecta is capable of processing food at similar rates throughout the year. Energy stores and enzyme activities were measured in the swimming muscles and liver of fish fed ad libitum. Summer-acclimated fish had higher concentrations of liver triglyceride stores and elevated activities of some enzymes of intermediary metabolism relative to winter-acclimated fish. The observed changes in intermdiary metabolism are probably related to annual cycles of growth and reproduction. It is suggested that the low aerobic scope for physiological performance in Antarctic fish may necessitate the seasonal switching of energy allocation between growth and reproduction.  相似文献   

17.
Hong Kong, lying just below the Tropic of Cancer (22°17′N, 114°09′E), experiences a strongly seasonal environment, with a cool almost temperate winter and a hot, tropical, summer. Histological sectioning of the gonads of the high-shore barnacle, Chthamalus malayensis Pilsbry, showed a seasonal trend in the development of its reproductive organs. Four stages of female gonad development were identified according to the cell types present: post-spawning, resting, growth and mature stages. The female gonad was mature from April to November, which was related to seawater temperatures, and entered a resting phase from December to March. Although the male gonad showed a seasonal developmental trend and reached maximum maturity in summer, the seminal vesicles were full of spermatozoa and functional throughout the year. The reproductive season of this species is therefore solely dependant upon the maturity of the female gonad. The estimated maximum number of broods per year was up to 10 and the maximum number of eggs produced per brood can reach 3,000 eggs. The minimum size for female gonad maturity was 6 mm rostro-carinal diameter (RCD) at which size, the barnacles were ~6-month old. Sperm production occurred at a smaller size (2 mm=2-month old). Compared with Chthamalus montagui and Chthamalus stellatus from temperate regions, C. malayensis produced a greater number of broods per year, had a longer reproductive period and faster gonad development. Chthamaloid barnacles in tropical regions may, therefore, invest more energy per year in reproduction during their life span. Contrary to the seasonal gonad developmental pattern of C. malayensis in the present study, however, C. malayensis in Singapore (which experiences only slight seasonal variation) had mature female and male gonads throughout the year, further supporting the strong role of climatic conditions effecting the reproductive biology of barnacles.  相似文献   

18.
The developmental stages from megalopa to third crab of the blue crab Callinectes sapidus Rathbun were tested in 12 combinations of cadmium (0, 50, and 150 ppb) and salinity (10, 20, 30, and 40) at 25°C. A reduction in survival and a significant delay in development from megalopa to third crab occurred within each salinity regime in 50 ppb compared with the control. Comparison of the delay in development within each salinity regime revealed that the sublethal effect of cadmium was most pronounced in the salinities normally preferred by C. sapidus. A similar comparison within each cadmium concentration, however, showed that the developmental time from megalopa to third crab was approximately the same irrespective of salinity. The developmental stages from hatch to first crab of the mud-crab Rhithropanopeus harrisii (Gould) were examined in 63 combinations of cadmium (0, 50, and 150 ppb), salinity (10, 20, and 30), constant temperature (20°, 25°, 30°, and 35°C) and cycling temperature (20° to 25°C, 25° to 30°C, and 30° to 35°C). The results indicated that cycling temperatures may have a stimulating effect on survival of the larvae compared to constant temperatures, both in the presence and in the absence of cadmium. Effects of cadmium and salinity and their interaction on the survival of the larvae from zoeae to megalopa were documented at most of the temperatures by analyses of variance. The zoeal larvae were more susceptible to cadmium than the megalopa. Effects of different combinations of cadmium and salinity on the duration of larval development were assessed by a t-test.  相似文献   

19.
Reproductively activeCalanus hyperboreus (Krøyer) andC. glacialis Jaschnov were captured in the upper 100 m of Fram Strait (77° to 79°N) in late winter 1987. There was no evidence of a phytoplankton bloom; chlorophylla concentrations were uniformly low (<0.1 mg m–3), and nitrate concentrations were uniformly high (>11.3 mg-at m–3). Gut-fullness measurements indicated that females were ingesting very little. The maturation state of gonads of bothC. hyperboreus andC. glacialis indicated that 75% of females were in a ripe condition consistent with observed egg laying. The lipid content of females laying eggs was reduced in both species compared to that of females not laying eggs. InC. hyperboreus the reduction was 39% and inC. glacialis it was 44%. All the evidence suggests that bothC. hyperboreus andC. glacialis were laying eggs in late winter by using lipids stored previously; they were not relying on ambient concentrations of phytoplankton. The daily rate of egg laying byC. glacialis using lipids in late winter exceeded the rate reported for summer when ambient food supplies have been shown to be necessary. It is suggested that individuals, spawned well in advance of the spring bloom of phytoplankton, may comprise a major portion of the annual recruitment to the entire population ofC. glacialis in this area, and that their life cycle can be completed within 1 yr. NeitherMetridia longa (Lubbock) norC. finmarchicus (Gunnerus) laid eggs during this study.  相似文献   

20.
J. Overnell 《Marine Biology》1976,36(4):335-342
The orientation of the opportunist, sublittoral barnacle Balanus trigonus is investigated. Water movement is the primary orientation stimulus for this species, but this effect may be modified by the influence of light acting in opposition to it. The barnacles orientate at right angles to the axis of wave-surge movement, and observations of feeding behaviour showed that in this position the cirral net could be swivelled 90° each way to make best use of both the advancing, and the reversing, water flow. In a steady unidirectional tidal current the barnacles aligned themselves so as to beat with the water flow, and observation suggests that stroking with the flow is more efficient than forcing the cirral net against the motion of the water. It is suggested that, for an opportunist short-lived species such as B. trigonus which is subjected to high predation rates, there is considerable selection pressure for rapid growth and early sexual maturity. To achieve this in a filterfeeding organism for which food is limiting, food collection must be as efficient as possible. B. trigonus has adopted a system of orientation to a variety of water movement regimes that allows efficient food collection over a wide range of conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号