首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, key ecological modelling limitations of a process-based simulation model and a Bayesian network were reduced by combining the two approaches. We demonstrate the combined modelling approach with a case study investigating increases in woody vegetation density in northern Australia's tropical savannas. We found that by utilising the strengths of a simulation model and a Bayesian network we could both forecast future change in woody vegetation density and diagnose the reasons for current vegetation states. The local conditions of climate, soil characteristics and the starting population of trees were found to be more important in explaining the likelihood of change in woody vegetation density compared to management practices such as grazing pressure and fire regimes. We conclude that combining the strengths of a process and BN model allowed us to produce a simple model that utilised the ability of the process model to simulate ecosystem processes in detail and over long time periods, and the ability of the BN to capture uncertainty in ecosystem response and to conduct scenario, sensitivity and diagnostic analysis. The overall result was a model that has the potential to provide land managers with a better understanding of the behaviour of a complex ecosystem than simply utilising either modelling approach in isolation.  相似文献   

2.
The sustainable development agenda 2030 calls for achievement of certain targets to ensure access to water and sanitation for all. Multi-stakeholder partnerships and the use of data and modelling tools are conditioning elements for their achievement. In this article, we demonstrate that participatory modelling supports informed and participatory decision making in complex river basins. An adapted companion modelling approach is presented to support collective action by reducing disputes and enhancing collaboration among stakeholders. The co-development and use of empirical models for understanding the complexity of the physical system is combined with the use of role-playing games to ensure the active involvement of stakeholders. The approach is implemented in a top-down water quality planning process in Turkey. Results show its suitability for managing water quality in complex river basins in an inclusive manner and its substantial benefits in developing stakeholders’ capacities and creating a cooperative environment.  相似文献   

3.
We discuss an approach for the statistical modelling of extreme precipitation events in South-West Australia over space and time, using a latent spatiotemporal process where precipitation maxima follow a generalised extreme value distribution. Temporal features are captured by modelling trends on the location and scale parameters. Spatial features are captured using anisotropic Gaussian random fields. Site specific explanatory variables are also incorporated. We fit several models using Bayesian inferential methods to precipitation extremes recorded at 36 weather stations around the Western Australian state capital city of Perth over the period 1907–2009. Model choice is performed using the DIC criterion. The best fitting model shows significant non-stationarity over time, with extreme precipitation events becoming less frequent. Extreme precipitation events are stronger at coastal locations, with the intensity decreasing as we head to the higher and drier areas to the North-East.  相似文献   

4.
Bashari et al. (2009) propose combining state and transition models (STMs) with Bayesian networks for decision support tools where the focus is on modelling the system dynamics. There is already an extension of Bayesian networks - so-called dynamic Bayesian networks (DBNs) - for explicitly modelling systems that change over time, that has also been applied in ecological modelling. In this paper we propose a combination of STMs and DBNs that overcome some of the limitations of Bashari et al.’s approach including providing an explicit representation of the next state, while retaining its advantages, such an the explicit representation of transitions. We then show that the new model can be applied iteratively to predict into the future consistently with different time frames. We use Bashari et al.’s rangeland management problem as an illustrative case study. We present a comparative complexity analysis of the different approaches, based on the structure inherent in the problem being modelled. This analysis showed that any models that explicitly represent all the transitions only remain tractable when there are natural constraints in the domain. Thus we recommend modellers should analyse these aspects of their problem before deciding whether to use the framework.  相似文献   

5.
One of the most important considerations in many environmental studies is need to allow for correlations among the variables. Monitoring and analyzing relationships between chemical environmental parameters using spatial correlation based regression modelling is the main motivation of this applied study. For this purpose, some noticeable environmental parameters of data sets obtained from two lakes have been considered and the concentrations of chemical variables such as cadmium and nitrate have been appraised by a regression-based geostatistical methodology. The modelling procedure consists of two stages. In the first stage, spatial variables are analyzed via multi-linear regression and some relationships are provided. Next, by using the spatial auto-correlations of the residuals, a type of regression-based kriging procedure is applied. The capacity of the model for appraising the water chemical variables is also tested and performance comparisons with ordinary kriging are conducted. Finally, the applications showed that analyzing water chemical variables with spatially correlated errors is a convenient and applicable approach for assessing the environmental systems.  相似文献   

6.
The application of computational fluid dynamics (CFD), particularly Large Eddy Simulation, for the modelling of buoyant turbulent plumes, has been demonstrated to be very accurate, but computationally expensive. Here a more basic, and therefore more generally practicable, approach is presented. Commercial CFD software is used to model such plumes using Reynolds-Averaged Navier-Stokes (RANS) turbulence models. A careful comparison is made between the numerical predictions and well-established results regarding the bulk properties of plumes. During this process, we are able to observe the well-known approximate Gaussian nature of the plume and achieve quantitative agreement with empirical plume spread coefficients. The use of numerical modelling allows for the investigation of the flow field and turbulence in those regions of the plume of most interest—the plume edge and near source regions. A comprehensive sensitivity study is conducted to identify the limits of applicability of this modelling approach. It is shown that the standard modelling approach of Morton, Taylor and Turner, which introduced the well-known entrainment assumption, pertains in a region well above the source region. At the plume edge, the levels of turbulence are contrasted with the value of the entrainment parameter. Finally, the effects of forcing the plumes with additional momentum at the source are considered, including the case of a pure jet. We show how these forced plumes eventually lose their momentum excess and tend to the behaviour of a pure, buoyant plume.  相似文献   

7.
Environmental and Ecological Statistics - In this paper we explore a covariance-spectral modelling strategy for spatial-temporal processes which involves a spectral approach for time but a...  相似文献   

8.
Software sensor design consists of building an estimate of some quantity of interest. This estimate can be used either to replace a physical measurement, or to validate an existing one. This paper provides some general guidelines for the design of software sensors based on empirical data. When the model is a priori unknown, the problem can be stated in terms of non-parametric regression or black-box modelling. Complexity control is the main difficulty in this setting. A trade-off must be achieved between two antagonist goals: the model should not be too simple, and model identification should not be too variable. We propose to address this issue by a penalization algorithm, which also estimates the relevance of input features in the identification process. A data-driven software sensor should also provide accuracy and validity indexes of its prediction. We show how these indexes can be estimated for complex non-parametric methods, such as neural networks. An application in environmental monitoring, the design of an ammonia software sensor, illustrates each step of the approach.  相似文献   

9.
Although predator–prey cycles can be easily predicted with mathematical models it is only since recently that oscillations observed in a chemostat predator–prey (rotifer–algal) experiment offer an interesting workbench for testing model soundness. These new observations have highlighted the limitations of the conventional modelling approach in correctly reproducing some unexpected characteristics of the cycles. Simulations are improved when changes in algal community structure, resulting from natural selection operating on an assemblage of algal clones differing in competitive ability and defence against rotifer predation, is considered in multi-prey models. This approach, however, leads to extra complexity in terms of state variables and parameters. We show here that multi-prey models with one predator can be effectively approximated with a simpler (only a few differential equations) model derived in the context of adaptive dynamics and obtained with a moment-based approximation. The moment-based approximation has been already discussed in the literature but mostly in a theoretical context, therefore we focus on the strength of this approach in downscaling model complexity by relating it to the chemostat predator–prey experiment. Being based on mechanistic concepts, our modelling framework can be applied to any community of competing species for which a trade-off between competitive ability and resistance to predators can be appropriately defined. We suggest that this approach can be of great benefit for reducing complexity in biogeochemical modelling studies at the basin or global ocean scale.  相似文献   

10.
Most performance criteria which have been applied to train ecological models focus on the accuracy of the model predictions. However, these criteria depend on the prevalence of the training set and often do not take into account ecological issues such as the distinction between omission and commission errors. Moreover, a previous study indicated that model training based on different performance criteria results in different optimised models. Therefore, model developers should train models based on different performance criteria and select the most appropriate model depending on the modelling objective. This paper presents a new approach to train fuzzy models based on an adjustable performance criterion, called the adjusted average deviation (aAD). This criterion was applied to develop a species distribution model for spawning grayling in the Aare River near Thun, Switzerland. To analyse the strengths and weaknesses of this approach, it was compared to model training based on other performance criteria. The results suggest that model training based on accuracy-based performance criteria may produce unrealistic models at extreme prevalences of the training set, whereas the aAD allows for the identification of more accurate and more reliable models. Moreover, the adjustable parameter in this criterion enables modellers to situate the optimised models in the search space and thus provides an indication of the ecological model relevance. Consequently, it may support modellers and river managers in the decision making process by improving model reliability and insight into the modelling process. Due to the universality and the flexibility of the approach, it could be applied to any other ecosystem or species, and may therefore be valuable to ecological modelling and ecosystem management in general.  相似文献   

11.
This paper describes the application of coastal hydro-informatic modelling (using the TELEMAC Modelling System) to address management issues arising from projected hydrodynamical and morphological changes within a shallow, sandy estuarine environment. The model incorporates the complex interaction of ocean, terrestrial and atmospheric processes. The case study of the Dyfi Estuary, on the west coast of Wales, is highlighted here. As sea levels have risen locally and are predicted to rise further, a National Nature Reserve (Borth Bog), which has been reclaimed from tidal waters by embankments, will be at increasing risk from flooding episodes due to overtopping of these embankments at high tide. Present and predicted future tidal-fluvial scenarios have been modelled in the Dyfi Estuary in order to estimate the potential for flooding. In addition, areas of greatest velocity change and potential for sediment erosion/accretion have been identified. A further process that has been investigated is how salt marsh migration is affected by sea-level rise. This case study exemplifies some fundamental and complex physical processes inherent to estuaries, and shows how different management options can be assessed, before their implementation, through a modelling approach.  相似文献   

12.
13.
The incorporation of land use (LU) data with socioeconomic data is a main issue in modelling. This is as a result of difference in data model and scale. This study proposed and tested the change–pattern approach, which allows the incorporation of these data sets in modelling LU change. Focusing on LU dynamics for a selected part of the Thames Gateway within the City of London, the approach tested two different methods of input selection for the modelling operations. Variables selected from these two methods serve as inputs into several neural networks tested in order to identify the direction of change for each of the LU types within the study area. The result shows that direction of LU change across the study area could be identified when spatial morphology of the area and socioeconomic variables are considered. Some classes of change could be identified fairly accurately using landscape metrics indicating level of fragmentation, extent of LU patches, shape complexity of LU patches in combination with some socioeconomic variables.  相似文献   

14.
15.
This work aims at discussing some concepts pertaining to the theory and practice of environmental modelling in view of the results of several model validation exercises performed by the group “Model validation for radionuclide transport in the system watershed-river and in estuaries” of project EMRAS (Environmental Modelling for Radiation Safety) supported by the IAEA (International Atomic Energy Agency). The analyses here performed concern models applied to real scenarios of environmental contamination. In particular, the reasons for the uncertainty of the models and the EBUA (empirically based uncertainty analysis) methodology are discussed. The foundations of multi-model approach in environmental modelling are presented and motivated. An application of EBUA to the results of a multi-model exercise concerning three models aimed at predicting the wash-off of radionuclide deposits from the Pripyat floodplain (Ukraine) was described. Multi-model approach is, definitely, a tool for uncertainty analysis. EBUA offers the opportunity of an evaluation of the uncertainty levels of predictions in multi-model applications.  相似文献   

16.
Conservation biologists increasingly rely on spatial predictive models of biodiversity to support decision-making. Therefore, highly accurate and ecologically meaningful models are required at relatively broad spatial scales. While statistical techniques have been optimized to improve model accuracy, less focus has been given to the question: How does the autecology of a single species affect model quality? We compare a direct modelling approach versus a cumulative modelling approach for predicting plant species richness, where the latter gives more weight to the ecology of functional species groups. In the direct modelling approach, species richness is predicted by a single model calibrated for all species. In the cumulative modelling approach, the species were partitioned into functional groups, with each group calibrated separately and species richness of each group was cumulated to predict total species richness. We hypothesized that model accuracy depends on the ecology of individual species and that the cumulative modelling approach would predict species richness more accurately. The predictors explained plant species richness by ca. 25%. However, depending on the functional group the deviance explained varied from 3 to 67%. While both modelling approaches performed equally well, the models of the different functional groups highly varied in their quality and their spatial richness pattern. This variability helps to improve our understanding on how plant functional groups respond to ecological gradients.  相似文献   

17.
The modelling of processes that occur in landscapes is often confronted to issues related to the representation of space and the difficulty of properly handling time and multiple scales. In order to investigate these issues, a flexible modelling environment is required. We propose to develop such a tool based on a Domain Specific Language (DSL) that capitalises on the service-oriented architecture (SOA) paradigm. The modelling framework around the DSL is composed of a model building environment, a code generator and compiler, and a program execution platform. The DSL introduces five language elements (entity, service, relation, scenario and datafacer) that can be combined to offer a wide range of possibilities for modelling in space and time at different scales. When developing a model, model parts are either built using the DSL or taken from libraries of previously built ones, and adapted to the specific model. The practical usage of the DSL is illustrated first with the Lotka–Volterra model, and then with a landscape modelling experiment on the spread of a mosquito-borne disease in the Sahelian region of West Africa. An interesting characteristic of this approach is the possibility of adding new elements into an existing model, and replacing others with more appropriate ones, thus allowing potentially complex models to be built from simpler parts.  相似文献   

18.
Three different modelling techniques to simulate the pollutant dispersion in the atmosphere at the microscale and in presence of obstacles are evaluated and compared. The Eulerian and Lagrangian approaches are discussed, using RAMS6.0 and MicroSpray models respectively. Both prognostic and diagnostic modelling systems are considered for the meteorology as input to the Lagrangian model, their differences and performances are investigated. An experiment from the Mock Urban Setting Test field campaign observed dataset, measured within an idealized urban roughness, is used as reference for the comparison. A case in neutral conditions was chosen among the available ones. The predicted mean flow, turbulence and concentration fields are analysed on the basis of the observed data. The performances of the different modelling approaches are compared and their specific characteristics are addressed. Given the same flow and turbulence input fields, the quality of the Lagrangian particle model is found to be overall comparable to the full-Eulerian approach. The diagnostic approach for the meteorology shows a worse agreement with observations than the prognostic approach but still providing, in a much shorter simulation time, fields that are suitable and reliable for driving the dispersion model.  相似文献   

19.
The primary role of a decision-maker is to make right decisions on the basis of available information and within the allowable time and resources constraints. The two basic types of models used for decision-making, technocratic and incremental, are discussed, and so are the common criteria of the decision-making process in a real world. The intensity and diversity of demands on our limited water resources have increased to such an extent that decision-makers are finding it increasingly difficult to consistently attain the needed flexibility and dexterity. Thus, even though decision-making has become exceedingly complex at present, and will become more so in the future, it is apparent that the average decision-maker has been provided with few, if any, new tools and concepts in the past several decades. One of these very few techniques is systems analysis.Even though modelling can add an important dimension to the decision-making process, surprisingly enough it still lacks credibility with the policy-makers. The several reasons that have given rise to this “credibility gap” are discussed in depth. Ten basic rules are suggested as guidelines for realistic model development. The positive and negative aspects of modelling as used for decision-making are discussed. Appropriate remedies are suggested to improve the image of modelling in the eyes of the decision-makers, which will reduce the proliferation of unvalidated, untested and unuseful models, much of which can be classified somewhere between dilettantism and academic exercises. It is concluded that even though some of our current models in this field are rather crude, and somewhat dependent on the experience and judgement of the analysts, the issue, in the final analysis, is very definitely on the side of having a model, even a crude one, against having no model at all.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号