首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examines the effects of density ofLeitoscoloplos fragilis and of fine sediment on benthic microalgal abundance and production in laboratory microcosms, and the effects of fine sediment on diffusive transport of ammonia. Microcosms having different densities ofLeitoscoloplos fragilis (Verrill, 1873) were determined in sediment collected from one of two field stations (each containing a different amount of fine particles <125 m) from Cape Henlopen, Delaware, USA, in August 1986. The worms were acclimated in a recirculating seawater system for two months prior to experiments. Chlorophylla concentrations were highest in sediments with less fine particles (<125 m). Benthic diatom production, total microbenthic metabolic activity, and concentrations of pore-water ammonia were higher in sediment microcosms containing high densities of worms.L. fragilis grew more in microcosms containing less fine particles and higher worm densities. The upward flux of ammonia across the sediment-water interface was higher in sediments with less fine particles. A greater abundance of fine particles in these sediments impedes the upward flux of ammonia to surface and nearsurface diatoms. The coupling between population density and diatom production, which can be altered by fine-particle abundance could control the distribution and stability of populations ofL. fragilis.  相似文献   

2.
The fate of pelagic diatoms in marine coastal aphotic sediments was investigated from sediment profiles in western Scandinavian waters. We used three independent methods to estimate pigment pools in the sediment: (1) fluorometry, (2) high-performance liquid chromatography and (3) pigments estimated from germinable diatom cells, using the dilution extinction method. A strong positive relationship with an intercept close to zero was observed between fucoxanthin, a marker of diatoms, and chlorophyll a. The fucoxanthin/chl a ratio was on average 1.05, which was similar to monocultures of dominating diatom taxa, indicating that sedimentary chl a was to a large extent of diatom origin. Chl a and fucoxanthin correlated significantly and positively with, and where within the same order of magnitude as, corresponding substances predicted from live diatom cell numbers obtained with the dilution extinction method. This indicates that a major part of surficial sediment chl a was bound in live cells of pelagic diatoms. There was a consistent change in viable cells with sediment depth and with timing of dominating taxa, with the non-spore-forming Skeletonema costatum dominating in the surface sediment in March and May, while the spore forming Chaetoceros spp. dominated deep in the sediment and during periods outside of the spring bloom (February and August). This indicates that chl a is bound in several different cell pools with different degradation rates, depending on diatom taxonomy. Thus, diatoms originating predominantly from the spring bloom may provide an important direct link in the pelagic–benthic coupling in this area.  相似文献   

3.
Four endosymbiotic diatoms were isolated from 2 species of larger foraminifera collected in the Red Sea and Hawaii. The photoadaptive responses of the cultured diatoms were measured at 312, 19 and 7 W cm-2. Two of the diatoms (Fragilaria shiloi and Nitzschia laevis), both isolated from Amphistegina lessonii, grew fastest at 312 W cm-2. The other two diatoms (N. valdestriata and N. panduriformis) which were isolated from Heterostegina depressa, grew best at 19 W cm-2. Of the four diatoms, F. shiloi grew best at high light levels. Also in F. shiloi, chlorophyll c content per cell was directly proportional to light intensity; in contrast chlorophyll a and carotenoids increased to maxima at 19 W cm-2. The chlorophyll a and c and carotenoid content of N. valdestriata were also maximal at 19 W cm-2. Photosynthetic rates, measured by respirometry, suggested that the diatoms were photoinhibited at higher light intensities and did well at moderately low light intensities (175W cm-2). The photocompensation points of all 4 diatoms were about 2% of the light available in the spring at 1-m depth at Elat on the Red Sea. At Elat the photocompensation point would lie between 40 and 50 m if the algae were free in nature. The amount of attenuation of light by the shells of the host has not yet been measured. Presumably photocompensation of the algae within hosts is reached at depths less than 40 m.  相似文献   

4.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

5.
Variations in number and biomass of benthic bacteria were examined in the surface sediments of a Mediterranean seagrass bed [Posidonia oceanica (L.) Delile] in the Gulf of Marconi (northwestern Mediterranean Sea) from 1990 to 1991. The annual dynamics of benthic bacterial density and biomass were compared to changes in elemental (organic C and total N) and biochemical (lipids, proteins, carbohydrates) composition of sediment organic matter, as well as to microphytobenthic biomass, dissolved inorganic nutrients and ATP. Bacterial densities exhibited marked seasonal variations (5.12 to 322.7x108 cells g-1 sediment dry wt) with highest values in late spring. Bacterial standing stocks (15.8 to 882.33 g C g-1 of sediment dry wt) were high. Bacterial biomass did not correlate with organic C, total N or to specific biochemical components, but correlated significantly with chlorophyll a, ATP and porewater phosphate concentrations. There is evidence that benthic bacteria were responding to variations of algal biomass. Bacterial biomass accounted, on average, for 30% of total living carbon (calculated on the basis of the ATP concentrations) and 8.4% of total organic carbon.  相似文献   

6.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

7.
Blooms of chain-forming diatoms often terminate with the mass flocculation and subsequent settlement of cells from the nutrient-depleted euphotic zone. While mass diatom aggregation has been suggested as an adaptive mechanism for placing resting spores in the deep sea, we hypothesized that aggregation may confer an immediate adaptive advantage to the associated diatoms as well. We tested this hypothesis by comparing the photosynthetic activity, pigment composition and nutrient-uptake rates of aggregated and suspended diatoms over time. Diatom aggregates were collected by SCUBA divers in the Santa Barbara Channel (34°23N; 119°50W) on 4 March 1987 and monitored for 9 d in the laboratory. Diatom aggregates sustained chlorophyll a-specific primary production rates two to nine times higher than those of freely suspended diatoms from the surrounding seawater. The timing of maximum productivity was strongly correlated with the appearance of remineralized ammonia within the aggregates. Chlorophyll a-specific nitrate-uptake rates were routinely three to nine times lower in diatom aggregates than in the surrounding seawater. Primary production and pigment concentrations of diatom aggregates aged in situ displayed changes similar to those observed in the laboratory. These results suggest that diatoms associated with aggregates maintain higher photosynthetic rates than freely suspended diatoms by efficiently exploiting remineralized ammonia within the aggregate microenvironment, in preference to external nitrate sources. The enhanced nutrient environment within aggregates may be important for understanding the adaptive significance of the mass flocculation of diatom blooms.  相似文献   

8.
In a shallow, subtidal, siliceous sediment, benthic microalgal biomass (g chlorophyll a cm-3) is influenced by light and physical sediment dynamics. The microalgal community is relatively dense, despite adverse conditions (7.0 g chlorophyll a cm-3), and is able to respond rapidly to favorable conditions. Productivity of this community is significantly correlated (P0.05) with benthic light. In addition, productivity is influenced by temperature and bottom water NH4 + and PO4 -3 concentrations, especially as the concentrations fall to levels approaching the K s (halfsaturation constant) of the microalgal community. Metabolic activity in this environment is dependent upon a continuous supply of organic carbon. Temperature is significantly correlated with respiration rate, but other factors (e.g. biomass and organic matter supply) are important also. Community respiration responds to overlying phytoplankton productivity in the same manner as deep-water benthic environments. Bacterial enumeration using CFU (colony-forming units) does not measure accurately the number of in situ metabolically active bacteria.This research was supported by Energy Research and Development Administration Contract AT (11-1) 3279, US AEC Contract AT (11-1) GEN 10, P.A. 20 and NOAA Sea Grant No. 04-3-158-22.  相似文献   

9.
Changes in the amounts of chlorophyll a, chlorophyll c, fucoxanthin, diadinoxanthin and -carotene were determined during Phaeodactylum tricornutum growth. The transition of the culture from the logarithmic to the stationary phase is accompanied by an increase in the carotenoids: chlorophyll a ratio, associated with variations in the percentage of individual carotenoids. While fucoxanthin content decreases with the age of the culture, diadinoxanthin content increases and -carotene remains almost constant. The furanoid isomer of diadinoxanthin, absent during logarithmic growth, appears increasingly during the nutrient-deficient period. Changes in the amounts of chlorophyll a, chlorophyll c and fucoxanthin are quite similar.  相似文献   

10.
Under conditions of natural irradiance, the development and decline of a flagellate-dominated phytoplankton population was followed in a coastal North Atlantic pond over a 3 d period in summer 1986. Irradiance negatively affected phytoplankton biomass estimated as chlorophyll a, which decreased during the day at photosynthetically available radiation (PAR) levels above 600 to 1000 mol m-2s-1; chlorophyll a increased at PAR values below this threshold. In addition, an inverse relationship was found between changes in chlorophyll a and changes in dissolved inorganic nitrogen, indicating synthesis of nitrogenous biomass mainly at night and degradation mainly during the day, with intense exchanges of material between the particulate and dissolved nitrogen fractions. The natural abundance of 13C in particulate matter increased initially, and then remained constant, and was controlled mainly by the ratio -carboxylases activity: ribulose biphosphate carboxylase activity. The hypothesis that the latter enzyme is broken down under high irradiance and is partly responsible for increases in external dissolved nitrogen was rejected.  相似文献   

11.
Rapid mass sinking of cells following diatom blooms, observed in lakes and the sea, is argued here to represent the transition from a growing to a resting stage in the life histories of these algae. Mass sinking is of survival value in those bloom diatoms that retain viability over long periods in cold, dark water but not in warm, nutrient-depleted surface water. Mechanisms for accelerating sinking speed of populations entering a resting or seeding mode are proposed. Previously unexplained features of diatom form and behaviour take on a new meaning in this context of diatom seeding strategies. Diatoms have physiological control over buoyancy as declining growth is accompanied by increasing sinking rates, where the frustule acts as ballast. Increased mucous secretion in conjunction with the cell protuberances characteristic of bloom diatoms leads to entanglement and aggregate formation during sinking; the sticky aggregates scavenge mineral and other particles during descent which further accelerates the sinking rate. Such diatom flocs will have sinking rates of 100 m d-1 or more. This is corroborated by recent observations of mass phytoplankton sedimentation to the deep sea. This mechanism would explain the origin of marine snow flocs containing diatoms in high productivity areas and also the well-known presence of a viable deep sea flora. That mortality is high in such a seeding strategy is not surprising. A number of species-specific variables pertaining to size, morphology, physiology, spore formation and frustule dissolution rate will determine the sinking behaviour and thus control positioning of resting stages in the water column or on the bottom. It is argued that sinking behaviour patterns will be environmentally selected and that some baffling aspects of diatom form and distribution can be explained in this light. Rapid diatom sedimentation is currently believed to be mediated by zooplankton faecal pellets, particularly those of copepods. This view is not supported by recently published observations. I speculate that copepod grazing actually retards rather than accelerates vertical flux, because faecal pellets tend to be recycled within the surface layer by the common herbivorous copepods. Egestion of undigested food by copepods during blooms acts as a storage mechanism, as ungrazed cells are likely to initiate mass precipitation and depletion of the surface layer in essential elements. Unique features of diatoms are discussed in the light of their possible evolution from resting spores of other algae. An evolutionary ecology of pelagic bloom diatoms is deduced from behavioural and morphological characteristics of meroplanktonic and tychopelagic forms. Other shell-bearing protistan plankters share common features with diatoms. Similar life-history patterns are likely to be present in species from all these groups. The geological significance of mass diatom sinking in rapidly affecting transfer of biogenic and mineral particles to the sea floor is pointed out.  相似文献   

12.
The surface sediment characteristics related to benthic microalgae primary production were studied at the Dogger Bank, North Sea, in order to evaluate the potential role of microphytobenthos as a food source for the macrobenthic fauna. Twenty-one stations were sampled in July 2001 and May 2002, with water depth ranging from 16.3 to 68.5 m. High-performance liquid chromatography pigment analyses revealed that concentrations of chlorophyll a, chlorophyll c and fucoxanthin are mainly associated with benthic diatom flora at most parts of the Dogger Bank. High percentage of phytopigments (>50%) was firmly attached to sand grains at the stations shallower than 40 m water depth. The deeper stations were characterized by a phytopigment composition originating from pelagic phytoplankton settled on the sea floor. Qualitative microscopy showed that the benthic microflora on top of the Bank mainly consists of small diatoms (5–10 μm), such as e.g., Diploneis spp., living attached to the sand grains. The results are discussed concerning possible implications for ecology and biogeochemistry of the Dogger Bank area.  相似文献   

13.
D. Deibel 《Marine Biology》1988,99(2):177-186
Because of the abundance and size of Oikopleura vanhoeffeni its quantitative role as a suspension feeder in cold ocean waters needs to be defined. To minimize the effect of manipulation and containment, and to assess the effect of naturally occurring factors on clearance rate, I used an in situ latex microbead technique in Logy Bay, Newfoundland, from February 1985 to June 1986. Individual clearance rates ranged from 8–944 ml h-1, increasing exponentially with increasing trunk length. Partial correlation and principal components analysis indicated that trunk length and the concentration of ingestible chlorophyll a accounted for a majority of the variation in clearance rate. At densities of 4–110 m-3, O. vanhoeffeni populations removed from >1 to 13% of the standing stock of ingestible food particles each day. Grazing by near-surface populations was lowest during the spring diatom bloom (>1.4% of daily particle production removed per day), and was highest in June during the post-bloom crash (4 to 10% of daily production removed). Some populations in mid-depth waters had much higher population clearance rates (ca. 50% of daily production removed) because of a greater proportion of large animals. The median percentage daily ration (g Cxg C-1xd-1x100%) of 64% accounted for observed house production rates (1 to 2 d-1, with each house=23% of body carbon).  相似文献   

14.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

15.
Three genetically distinct clones of Skeletonema costatum (Grev.) Cleve were grown at 20°C under high (274 E m-2 s-1) and low (27 E m-2 s-1) light conditions and their photoadaptive photosynthetic responses compared. When all three clones were grown under low light, pigment analyses and fluorescence excitation spectra demonstrated that the accessory pigments, chlorophyll c and fucoxanthin, became more important in light-harvesting compared to chlorophyll a. Photosynthetic unit sizes increased for Photosystems I and II in low light, but photosynthesis vs irradiance characteristics were not reliable predictors of photosynthetic unit features. Fluorescence excitation spectra and photosynthesis vs irradiance (P-I) relationships indicated that changes in energy transfer occurred independent of changes in pigment content. Large increases in accessory pigment content were not accompanied by large increases in excitation from these pigments. Changes in energy transfer properties were as important as changes in PSU size in governing the photoadaptive responses of S. costatum. When the three clones were grown under identical conditions, each had a separate and distinct pattern of photoadaptation. Significant differences among clones were found for pigment ratios, photosynthetic unit sizes for Photosystems I and II and efficiency of energy transfer between pigments. These strikingly different photoadaptive strategies among clones may partially account for the great ecological success of the diatom species. This is the first quantitative investigation of the importance of both chlorophyll c and fucoxanthin to the adaptive responses of diatoms to light intensity, and represents the most complete characterization of the photoadaptive responses of a single species of marine phytoplankter to differences in light environment.  相似文献   

16.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

17.
G. Döhler 《Marine Biology》1984,83(3):247-253
The marine diatoms Lauderia annulata Cleve and Thalassiosira rotula Meunier were grown at different salinities (20, 35 and 45) and exposed to different levels of midultraviolet, UV-B) 439, 717 and 1230 J m-2 d-1, weighted) for 2 d. A low UV-B dose (439 J m-2 d-1) usually caused a slight increase in biomass production (dry weight) compared to non-UV-B irradiated cells. Enhanced UV-B radiation (717 J m-2 d-1) depressed protein and pigment content (chlorophyll a, chlorophyll c 1+c2 and carotenoids), especially in algae grown at 20 or 35 salt concentration of the nutrient solution. The effect of UV-B radiation (717 J m-2 d-1) on the pattern and concentration of amino acids was species-dependent. Aspartic acid was reduced in all tested diatoms. A drastic increase in glutamine and a reduction in glutamic acid pools could be observed in L. annulata samples, but no significant variation of the impact of UV-B was found in dependence on the salt concentration of the nutrient medium. T. rotula cells grown at 35 S showed an increase of glutamic acid and a decrease of glutamine levels after UV-B radiation. The results are discussed in relation to the impact of UV-B upon carbon and nitrogen metabolism.  相似文献   

18.
N. M. Saks 《Marine Biology》1982,68(2):175-179
Three strains of Nitzschia ovalis Arnott grew at temperatures from 15°–36°C and at salinities from 5–40 S Optimum growth occurred at combinations of 25°, 27.5° and 30°C and 25, 30 and 35S. This estuarine benthic diatom tolerates wide salinity and temperature conditions while demonstrating resistance to ultraviolet irradiation at 350 nm.  相似文献   

19.
E. Paasche 《Marine Biology》1973,19(3):262-269
The variation of the rate of silicate uptake with varying silicate concentration in the medium was investigated in short-term experiments with the following marine diatom species:Skeletonema costatum, Thalassiosira pseudonana, T. decipiens, Ditylum brightwellii, andLicmophora sp. The uptake conformed to Michaelis-Menten kinetics only after a correction had been made for reactive silicate that apparently could not be utilized by the diatoms. The magnitude of this correction was in the range of 0.3 to 1.3 g-at Si/l. Mean values of the half-saturation constant of silicate uptake were calculated for the different species. The lowest value was found inS. costatum (0.80 g-at Si/l) and the highest inT. decipiens (3.37 g-at Si/l). Growth limitation by low silicate concentrations could be a cause of species succession in marine plankton-diatom blooms.  相似文献   

20.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号