首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 904 毫秒
1.
采用管式膜微滤高岭土悬浊液,考察了恒通量下曝气对膜污染的影响,并对不同膜面气体流速下跨膜压力和膜污染周期变化进行了研究,此外,采用阶梯通量法对临界通量进行了测定。结果表明,曝气可显著减缓膜污染,延长膜污染周期,同时提高膜的临界通量;随着膜面气体流速由0.067 m·s-1提升至0.251 m·s-1时,膜污染平均速率由0.366 kPa·h-1降低至0.104 kPa·h-1,膜污染周期由8 d延长至31 d,临界通量由8~10 L·(m2·h)-1提高至22~26 L·(m2·h)-1。此外,通过惯性模型分析发现,膜的临界通量与膜面混合流速呈良好的线性关系,R2=0.98;但随着膜面气体流速的增加,悬浊液中高岭土粒径逐渐变小,并且通过膜表面污染阻力构成分析发现,膜表面不可逆污染阻力由13.9%提高至31.6%,这不利于膜污染控制。  相似文献   

2.
次临界操作下的膜污染机理研究   总被引:12,自引:0,他引:12  
临界通量在膜污染控制的水动力学条件优化中是一个非常有意义的概念。本研究用一种新型的中空纤维膜组件过滤活性污泥混合液,采用通量阶式递增法对临界通量进行测定,实验表明,气水二相流是一个提高临界通量非常有效的方法,而且临界通量随着曝气强度的增大而增大,根据测定结果,可以得出膜生物反应器(MBR)的3个水动力学操作区:超临界区、临界区和次临界区。次临界操作可以防止颗粒物质在膜面上沉积引起的可逆污染,在次临界操作下,膜污染分为两个阶段,第一阶段为不可逆污染发展阶段,跨膜压力(TMP)发展缓慢;第一阶段膜的不可逆污染导致膜丝点通量不断的重分配,一旦出现膜丝上某一点的通量大于临界通量时,颗粒物质就以此点为突破口,不断沉积到膜丝表面,发生可逆污染,膜污染进入第二阶段,TMP急剧增加。  相似文献   

3.
次临界操作下的膜污染机理研究   总被引:5,自引:0,他引:5  
临界通量在膜污染控制的水动力学条件优化中是一个非常有意义的概念。本研究用一种新型的中空纤维膜组件过滤活性污泥混合液 ,采用通量阶式递增法对临界通量进行测定 ,实验表明 ,气水二相流是一个提高临界通量非常有效的方法 ,而且临界通量随着曝气强度的增大而增大 ,根据测定结果 ,可以得出膜生物反应器 (MBR)的 3个水动力学操作区 :超临界区、临界区和次临界区。次临界操作可以防止颗粒物质在膜面上沉积引起的可逆污染 ,在次临界操作下 ,膜污染分为两个阶段 ,第一阶段为不可逆污染发展阶段 ,跨膜压力 (TMP)发展缓慢 ;第一阶段膜的不可逆污染导致膜丝点通量不断的重分配 ,一旦出现膜丝上某一点的通量大于临界通量时 ,颗粒物质就以此点为突破口 ,不断沉积到膜丝表面 ,发生可逆污染 ,膜污染进入第二阶段 ,TMP急剧增加。  相似文献   

4.
厌氧膜生物反应器处理酒厂废水运行特性研究   总被引:1,自引:0,他引:1  
在一体式平板厌氧膜生物反应器处理酒厂废水的试验中,研究了污染物的去除效果和平板膜组件的运行、污染情况.试验结果表明,COD容积负荷为3~7 kg/(m3·d)、水力停留时间(HRT)为16 h时,平均COD去除率达94.2%;在膜通量为4.6 L/(m2·h)、上升流速为2.5 m/h的条件下,平板膜组件能够连续运行18~20 d;在该试验中临界通量和临界上升流速分别为10~15 L/(m2·h)和5.0m/h,平板膜组件应该在这两个临界值之下运行.膜过滤阻力分析测试结果表明,泥饼层阻力是总阻力的最大组成部分.  相似文献   

5.
通过小试试验,探讨了平板膜生物反应器中临界通量问题。在试验中发现,平板膜生物反应器运行过程中,存在临界通量值,本试验中污泥质量浓度为10 g/L,临界通量值为4.86×10-6m/s;在该通量值以下运行时,膜污染速度比较缓慢,在该通量值以上运行时,膜污染比较迅速。通过对膜运行过程阻力的分析发现,随着通量的提高,内部污染阻力增加速度大于膜泥饼污染阻力增加速度。膜片在恒流下运行一段时间后,压力会突然上升,其主要原因是由于膜面泥饼的聚集。  相似文献   

6.
采用移动床生物膜反应器(MBBR)联合管式膜构建气提式管式膜MBR体系用以处理生活污水,考察了曝气对污水处理效果、膜内气液流态及膜过程的影响,探讨了污泥特性的变化及其对膜污染过程的影响机制。结果表明,气提式管式膜MBR体系下膜出水DO浓度高于混合液,且随着曝气量由50 L·h−1提高至150 L·h−1,管式膜内气含率由0.33增至0.60并呈“活塞流”流态,操作周期由6~7 d延长至17 d,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,临界通量显著增大;同时,MBBR混合液中EPS总量呈减小趋势,但MBBR内悬浮污泥粒径变小,且膜表面EPS中PN/PS比例显著高于MBBR混合液。膜表面污染阻力构成分析表明,气提式管式膜MBR体系下容易发生膜孔堵塞,膜污染以不可逆污染阻力为主。  相似文献   

7.
膜生物反应器次临界通量运行的膜污染特性研究   总被引:1,自引:1,他引:0  
膜生物反应器(MBR)是将膜分离与生物反应相结合的污水处理新工艺,近年来已引起广泛的关注,但不可避免的膜污染限制其更广泛的应用。临界通量在膜污染控制中是个非常重要的概念。本试验研究平板膜生物反应器在次临界通量运行下的膜污染状况,并结合膜污染模型进一步表征膜表面的污染特性。试验结果表明。该平板膜生物反应器在次临界通量运行的情况下,膜污染可分为膜污染缓慢发展阶段(第Ⅰ阶段)和膜污染迅速发展阶段(第Ⅱ阶段),可分别用膜孔堵塞模型和泥饼阻力模型表征膜阻力与时间的变化关系。同时,对运行后的膜阻力分布进行分析,表明泥饼阻力和孔道吸附堵塞阻力是膜污染的主要组成部分,分别占到总阻力的73%和24%,而膜本身阻力仅占3%。  相似文献   

8.
针对沈阳某药厂维生素C生产工艺中凝结水产量大、处理成本高和杂质复杂等问题,提出了采用反渗透技术对工艺凝结水进行处理。在前期确定的最优操作条件基础上持续运行,研究了运行临界通量、清洗时机和清洗方式等工艺条件。结果表明,在本工艺条件下,反渗透膜系统的临界通量介于1.1 L/(m2.min)到1.2 L/(m2.min)之间,斜率变点分析法确定的可逆膜污染周期为10 d;加强型清洗策略EFM(enhanced flux maintenance)的操作是针对不可逆膜污染的一种有效清洗方式,EFM持续30 min为宜,NaClO和NaOH都是有机污染的有效清洗剂,膜的平均恢复率分别为85.4%和81.6%,显示出实际应用的可行性,具有推广价值。  相似文献   

9.
改性PES膜在MBR中膜阻力分析及膜污染机理研究   总被引:2,自引:0,他引:2  
以聚醚砜(PES)、醋酸纤维素(CA)和纳米二氧化钛(TiO2)为膜材料,采用L-S相转化法制备共混改性PES膜。在24℃、0.2 MPa的操作条件下,制得的PES膜纯水通量为300 L/(m2.h)左右,CA改性PES膜为660 L/(m2.h)左右,TiO2改性PES膜为840 L/(m2.h)左右。通过膜生物反应器中膜阻力的测定,表明膜污染主要由浓差极化层及凝胶层引起的;通过活性污泥对膜污染机理的研究,判断出污泥的过滤过程基本符合沉积过滤定律。在MBR中运行时,改性PES膜稳定通量高于未改性膜,总阻力低于未改性膜;TiO2改性膜稳定通量高于CA改性膜,总阻力低于CA改性膜;通过扫描电镜分析,改性PES膜沉积层的厚度均比未改性膜薄,TiO2改性膜沉积层厚度小于CA改性膜,表明改性膜的抗污染性能提高了,TiO改性膜抗污染性能更优。  相似文献   

10.
观察新型五孔PVDF共混改性纤维膜SEM形貌特征,采用逐级通量法测定PVDF/PMMA和PVDF/TPU共混改性膜的临界通量,研究在次临界和超临界通量下A(PVDF/PMMA)与B(PVDF/TPU)2种管式膜组件的过滤和抗污染性能,并在次临界通量下处理地表水。结果表明,PVDF共混改性膜具有优良的微观结构,且膜B性能较好;膜A、B的临界通量分别为12 L/(m2.h)和10 L/(m2.h);膜组件B比膜组件A抗污染性能好。次临界通量下膜组件的运行比超临界通量下的稳定。与采用单独超滤处理某市地表水相比,2种膜组件采用混凝+超滤工艺的运行处理效果更好,且膜组件B比膜组件A处理效果佳。  相似文献   

11.
实现膜污染有效控制是充分发挥陶瓷膜在废水处理及回用领域适用性的关键。为此,构建了平板陶瓷膜反应器,针对性地开展了平板陶瓷膜处理市政污水二级出水运行优化控制与膜污染机制分析研究。结果表明,通过四因素三水平正交实验,得出本实验条件下最佳运行控制工况为:蠕动泵转速200 r·min−1(对应初始膜通量200 L·(m2·h)−1)、过滤时间10 min、水力反冲时间30 s、间歇运行时间2 min;在此运行工况下,平板陶瓷膜可保持平均膜通量43.08 L·(m2·h)−1以上稳定运行16 d(384 h),期间系统出水浊度、色度、COD等水质指标稳定满足《城市污水再生利用 城市杂用水水质》(GB/T 18920-2002)标准要求;原水和膜污染层元素及官能团对比表征结果表明,脂肪族类、酰胺类、无机硅化物类以及无机金属离子是造成膜污染的主要污染物,而凝胶层阻力则对平板陶瓷膜膜污染形成起主导作用。  相似文献   

12.
康昀  曲丹  封莉  程翔  张立秋 《环境工程学报》2015,9(12):5763-5768
采用直接接触式膜蒸馏工艺(DCMD)浓缩处理高浓度发酵废液,在热侧温度65℃、冷侧温度30℃条件下,连续运行21 h,考察了浓缩过程中产水通量、产水侧COD和TOC浓度变化及蛋白质浓缩效果.结果表明,产水通量随运行时间延长而下降且降速较快,15 h内由17.1 kg/(m2·h)降至8.9 kg/(m2·h);经去离子水冲洗,产水通量可恢复至56.1%.产水中COD和TOC浓度随处理时间延长而不断增大.此外,原水与膜蒸馏出水中GC-MS分析结果也表明,随运行时间延长,原水中有更多种类的有机物进入产水侧,主要为挥发性有机物.对膜内表面进行扫描电镜-能谱(SEM-EDS)分析发现,膜内表面有块状沉积物出现,主要成分为有机物,含有少量的无机物.DCMD运行21 h后,废液体积浓缩8.3倍,有用组分蛋白质浓缩6.9倍,COD和TOC的去除率均达95%以上.  相似文献   

13.
空气通量是影响SPG膜微气泡曝气生物膜反应器运行性能的重要参数。在不同空气通量条件下,考察了微气泡产生特性及氧传质特性,以及SPG膜微气泡曝气生物膜反应器运行性能。结果表明,当空气通量由31.85 L/(min·m2)降低至12.74 L/(min·m2)时,产生的微气泡平均直径由62.9 μm减小到32.6 μm,氧传质系数由0.31 min-1降低至0.19 min-1,但氧传质效率由67.7%提高至90.3%。生物膜反应器DO浓度随空气通量的降低而下降,导致生物膜好氧代谢活性下降,进而COD和氨氮去除效率降低;同时,在较低DO浓度下,可实现同步硝化反硝化过程去除TN。随着空气通量的降低,生物膜反应器氧利用率增加,空气通量为12.74 L/(min·m2)时,可接近100%;同时,曝气能耗降低,在相同条件下能耗低于传统大气泡曝气。  相似文献   

14.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

15.
为明确重力流超滤工艺(gravity-driven membrane,GDM)在无清洗、无维护条件下长期运行的通量变化特征及其对雨水的净水效果,对GDM装置进行了为期240 d的运行。结果表明:长期运行的GDM装置可分为3个时期,分别为启动期(0~8 d)、稳定期(9~150 d)和下降期(151~240 d)。GDM装置运行9 d后通量即可保持稳定,在无清洗条件下,最大稳定运行时间可达150 d,其平均通量为(8.85±0.74) L·(m2·h)−1。此外,不同的进水水质因子,包括溶解氧(dissolved oxygen,DO)、pH、总有机碳(total organic carbon,TOC)和菌落总数,是影响稳定通量值的关键因素,其影响效应在稳定期和下降期均表现出不同规律。在稳定期内,GDM运行的出水水质较好,雨水中的典型污染物(浊度、色度、TOC和菌落总数)经净化后均达到我国《生活饮用水卫生标准》。而在下降期(151~240 d),膜通量降低至5.37 L·(m2·h)−1,且GDM出水中菌落总数存在超标现象,因此,建议在运行150 d后对GDM进行清洗维护,以恢复膜通量和稳定净水效果。此外,通过表面清洗和手动反冲洗即可恢复GDM装置80%的膜通量。综上所述,GDM可稳定净化雨水,长期运行后简单清洗即可恢复大部分膜通量,适用于在我国农村地区推广应用。  相似文献   

16.
采用强化混凝-平板折转错流膜分离技术对脱墨废水的二级生化出水进行了深度处理中试研究,从运行方式、超滤膜种类、清洗方式、长期运行稳定性等方面评估了工艺适用性。结果表明,间歇运行方式可有效降低滤饼层阻力(Rc)和浓差极化阻力(Rg),缓解膜污染,提高水通量和出水水质。亲水性强、截留分子质量(30 kDa)较大的聚偏氟乙烯(PVDF)超滤膜可以延缓膜污染,提高产水率和出水水质;比截留分子质量(8 kDa)较小的PES膜更适宜脱墨废水二级生化出水的处理。正反同步冲洗可有效清洗膜表面及膜孔内部,显著降低滤饼层阻力(Rc)、孔堵阻力(Rf)、浓差极化阻力(Rg),且可避免反冲洗损伤膜表面功能层。在跨膜压差为0.025 MPa、聚合氯化铝投加量为2 g·L−1条件下,采用停歇2 min、运行8 min操作方式,PVDF超滤膜可在膜通量为80 L·(m2·h)−1以上连续运行50 h,COD、浊度、色度的平均去除率分别可达79.1%、99.9%和99.4%,满足我国《工业用水水质标准》(GB/T 19923-2005)中循环冷却水系统补水要求,且清洗后水通量可恢复95%以上,表明该技术具有深度处理脱墨废水的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号