首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Steady State Water Chemistry Model (SSWCM) is a common method for determinations of critical loadof acid and subsequently of critical loadexceedance for lakes. One way to verify the modeloutput, is to compare with chemical indicatorssuch as pH-value, alkalinity or ANC. When themedian chemical status (as ANC) is used 65% ofthe lakes responded according to the exceedancevalue. For these the calculated exceedanceresulted in violation of the critical chemicalvalue while non-exceedance gave no violation.Since biota react on extreme conditions a morecorrect evaluation should be based on minimumvalues for the chemical indicator. This raises thefraction of lakes responding to 78%. Non-exceedance is seldom found inlakes with acid conditions. The evaluationindicates that the calculation of critical load ofacidity by means of SSWCM is very reliable.  相似文献   

2.
The purpose of this study is to evaluate cost-effective reduction strategies for nitrogen oxides (NO x ) in the Asian region. The source-receptor relationships of the Lagrangian “puff” model of long-range transportation, ATMOS-N, were used to calculate the wet/dry deposition of the nitrogen (N) in Asia. Critical loads of N deposition in Asia were calculated from the relationships between the critical load of sulfur (S) and balance of N in and out using the data of S critical load of RAINS-ASIA. The cost functions of N reduction of Asian countries were derived by the regression analysis with the data of cost functions of European countries used in RAINS. In order to assess the environmental impact, the gaps between N deposition and critical load of N were calculated. The emission of NO x was reduced in some cases of this model, and the changes of gaps between N deposition and critical load were observed as well as the changes of the reduction cost. It is shown that a uniform reduction of NO x emissions by countries in Asia is not cost-effective strategy.  相似文献   

3.
In the 1999 Gothenburg protocol to the UN/ECE LRTAP Convention andin the negotiations for an EU acidification strategy the area withexceedances of critical loads has been the preferred measure forenvironmental impacts. The aim of this study has been to assessthe influence of the uncertainty and spatial variation of both thecritical loads and deposition values on the calculated area withexceedances of critical loads. This has been done on a nationalscale for Denmark and on the European scale based on the dataincluded in the RAINS model. It is demonstrated that includinguncertainty and spatial variation in exceedance calculations, ingeneral gives larger exceeded area for the critical load ofacidity, CL(A). The picture for the critical load of nutrientnitrogen, CLnut(N), is more mixed because of the higherproportion of exceeded areas. A further point of interest is thepossibility of validating relationships between critical loadexceedances and observable damage based on large scale monitoringand model data. It is demonstrated that it will probably not bepossible to use exceedance calculations on European scale as basisfor validation exercises, linking exceedances to observable damage.  相似文献   

4.
Quantifying construction and demolition (C&D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C&D waste generation at both regional and project levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C&D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested.  相似文献   

5.
Critical loads have become a well-establishedpart of the work programme of the UnitedNations Economic Commission for Europe (UNECE) Conventionon Long-Range Transboundary Air Pollution (CLRTAP). Thelinking of ecosystem response to deposition level is thecentral principal of the critical loads approach. Foreach ecosystem, a biological indicator is chosen, asuitable chemical criterion selected and a criticalchemical limit assigned. The Bc:Al ratio is the mostwidely used chemical criterion for setting criticalloads. However, critical loads based on this criterionare very sensitive to marine deposition. In regions whichreceive high depositions of marine-derived base cations,such as the Republic of Ireland (ROI) and the UnitedKingdom (UK), critical loads based on the Bc:Al criterionwill inevitably be high. Therefore, it is proposed thatcritical loads are estimated using multiple chemicalcriteria with appropriate critical limits to protect thechosen biological indicators. The range of publishedchemical criteria have been applied to the ROI and theUK. The chemical criterion corresponding to the mostsensitive critical load have been mapped and thecontribution of each to the final maps investigated. Thesimulations indicate that the most sensitive criteria forsetting critical loads are based on specifying critical Hor Al concentrations. However, the choice of critical limits andmodel parameters will ultimately effect the criticalloads. Therefore, it is important that appropriate criticallimits are chosen to protect the biological indicator andreceptor ecosystem from long-term damage.  相似文献   

6.
Current legislation within Europe aimed at limitingecosystem damage resulting from inputs of atmosphericpollution is based on the critical load concept. Mineralweathering rates are central to the calculation ofcritical loads (acceptable levels) of acid deposition.The authors have undertaken a number of studies whichillustrate the complications and limitations inherent inpredicting mineral weathering rates and the implicationswhich these have for critical loads calculations andmapping. Calculated weathering rates and critical loadsfor two acid-sensitive parent materials (greywackes andgranites) are presented and are used to illustrate theimpact that uncertainty can have on critical loadexceedances. The results have obvious implications forportraying the uncertainties of critical loads to policy makers.  相似文献   

7.
Critical loads have for several years been employed bypolicymakers to aid in the development of strategies for aciddeposition abatement. They provide an effects-based approachwhereby an acid deposition flux greater than the critical load(known as critical load exceedance) implies that long-termharmful effects on a selected target organism will occur.Implicit in this approach are two assumptions: first, theexceedance of a critical load will harm the target organism,and second, the severity of biological impact is related to themagnitude of exceedance. However, static models give noindication of when the predicted damage might occur. One suchmodel, the Steady-State Water Chemistry (SSWC) model, employs aseries of empirical relationships to derive the pre-industrial,baseline leaching rate of base cations from measured waterchemistry using the so-called `F-factor'. The SSWC model setsthe critical load relative to pre-industrial base cationleaching (a permanent buffer of acid deposition) and a selectedacid neutralizing capacity (ANC) value which corresponds with aknown likelihood of damage to a biological target organism.Here we interpret the meaning of critical load exceedance as aprediction of steady-state ANC, and explore the relationshipbetween exceedance of the critical load and current chemistry. We demonstrate that a critical loadexceedance with the SSWC model does not necessarily indicatethat the critical chemical threshold (zero ANC) has alreadybeen crossed, and there may be no correlation betweenexceedance and biological status. A reformulation of the SSWCmodel is proposed which provides a direct link between currentdeposition and current chemical conditions, and is thereforemore likely to indicate current biological damage. Thereformulation illustrates the discrepancy between currentchemical status and that predicted by the SSWC model atsteady-state, which is a function of the `F-factor'.  相似文献   

8.
The current landfill gas (LFG) management (based on flaring and utilization for heat generation of the collected gas) and three potential future gas management options (LFG flaring, heat generation and combined heat and power generation) for the Old Ämmässuo landfill (Espoo, Finland) were evaluated by life-cycle assessment modeling. The evaluation accounts for all resource utilization and emissions to the environment related to the gas generation and management for a life-cycle time horizon of 100 yr. The assessment criteria comprise standard impact categories (global warming, photo-chemical ozone formation, stratospheric ozone depletion, acidification and nutrient enrichment) and toxicity-related impact categories (human toxicity via soil, via water and via air, eco-toxicity in soil and in water chronic).The results of the life-cycle impact assessment show that disperse emissions of LFG from the landfill surface determine the highest potential impacts in terms of global warming, stratospheric ozone depletion, and human toxicity via soil. Conversely, the impact potentials estimated for other categories are numerically-negative when the collected LFG is utilized for energy generation, demonstrating that net environmental savings can be obtained. Such savings are proportional to the amount of gas utilized for energy generation and the gas energy recovery efficiency achieved, which thus have to be regarded as key parameters. As a result, the overall best performance is found for the heat generation option – as it has the highest LFG utilization/energy recovery rates – whereas the worst performance is estimated for the LFG flaring option, as no LFG is here utilized for energy generation.Therefore, to reduce the environmental burdens caused by the current gas management strategy, more LFG should be used for energy generation. This inherently requires a superior LFG capture rate that, in addition, would reduce fugitive emissions of LFG from the landfill surface, bringing further environmental benefits.  相似文献   

9.
Critical load exceedances have been used as an effects-related parameter for guiding international air emission control negotiations. High-resolution critical load data are combined with low-resolution deposition data.This article shows that doing so systematicallyunderestimates `true' critical load exceedances as obtainedfrom combining critical load and deposition data of identicalhigh spatial resolution. 95th percentile critical loadexceedances in EMEP grids based on high resolution depositiondata are 60 and 150% higher (mean values for nutrientnitrogen and acidity, respectively) than critical loadexceedances based on the low resolution EMEP depositionmodel. The latter are used in international negotiations. Differences in individual EMEP grid squares vary betweeninsignificantly different from zero and 340%, depending onregional deposition and critical load characteristics andcritical load types (nutrient nitrogen versus acidity).Exceedances based on high-resolution deposition values arealso compared to EMEP grid averages of these values forforests only. This comparison excludes the effect ofsystematically higher depositions to forests. Still, thescale difference of (averaged, low-resolution) deposition and(high-resolution) critical loads data yields underestimatesof the 95th percentiles by on average ca. 20%.These systematic errors due to the scale dependence should beborne in mind when interpreting effects of internationalemission control measures.  相似文献   

10.
Integrated solid waste management based on the 3R approach   总被引:1,自引:0,他引:1  
Integrated solid waste management (ISWM) based on the 3R approach (reduce, reuse, and recycle) is aimed at optimizing the management of solid waste from all the waste-generating sectors (municipal, construction and demolition, industrial, urban agriculture, and healthcare facilities) and involving all the stakeholders (waste generators, service providers, regulators, government, and community/neighborhoods). This article discusses the concept of solid waste management (SWM). Initially, SWM was aimed at reducing the risks to public health, and later the environmental aspect also became an important focus of SWM. Recently, another dimension is becoming a critical factor for SWM, i.e., resource conservation and resource recovery. Hence, the 3R approach is becoming a guiding factor for SWM. On the one hand, 3R helps to minimize the amount of waste from generation to disposal, thus managing the waste more effectively and minimizing the public health and environmental risks associated with it. On the other hand, resource recovery is maximized at all stages of SWM. Lately, the new concept of ISWM has been introduced to streamline all the stages of waste management, i.e., source separation, collection and transportation, transfer stations and material recovery, treatment and resource recovery, and final disposal. It was originally targeted at municipal solid waste management (MSWM), but now the United Nations Environment Programme (UNEP) is promoting this concept to cover all waste generating sectors to optimize the level of material and resource recovery for recycling as well as to improve the efficiency of waste management services. The ISWM concept is being transformed into ISWM systems to replace conventional SWM systems. This article further discusses the implementation process for ISWM. The process includes a baseline study on the characterization and quantification of waste for all waste generating sectors within a city, assessment of current waste management systems and practices, target setting for ISWM, identification of issues of concern and suggestions from stakeholders, development of a draft ISWM plan, preparation of an implementation strategy, and establishment of a monitoring and feedback system. UNEP is assisting member countries and their cities to develop an ISWM plan covering all the waste generating sectors within a specific geographical or administrative area such as a city or municipality. This umbrella approach is useful to generate sufficient volumes of recycling materials required to make recycling industries feasible. This is also helpful for efficient reallocation of resources for SWM such as collection vehicles, transfer stations, treatment plants, and disposal sites. UNEP is assisting cities to develop and implement ISWM based on the 3R approach. These experiences could be useful for other countries to develop and implement ISWM to achieve improved public health, better environmental protection, and resource conservation and resource recovery.  相似文献   

11.
We reviewed the current methods for calculatingcritical loads of acidity for forest soils. The consequencesof four sets of assumptions concerning the soil modelstructure, parameter values and the critical loads criterionwere explored by comparing the values of the averageaccumulated exceedance (AAE) calculated for Finland withdeposition values for the year 1995. The AAE index is given inthe unit of deposition and is a measure of how far a region isfrom being protected in terms of fulfilling a certaincriterion, taking into account the size of the ecosystem areas.Using a critical limit for the molar ratio of theconcentrations of base cations to aluminium in soil solutiongave the lowest average accumulated exceedance. Assumingorgano-aluminium complexes and leaching of organic anions gaveAAE = 4 eq ha-1 a-1, which was close to the valueobtained with the standard approach used in Finland, assuminggibbsite equilibrium and no leaching of organic anions,yielding AAE = 5 eq ha-1 a-1. With a critical basesaturation limit, instead of the concentrations criterion, theAAE index was 17 eq ha-1 a-1. The highest averageaccumulated exceedance (AAE = 25 eq ha-1 a-1),corresponding to the lowest critical load, was obtained whenthe effects-based criterion (critical concentration or criticalbase saturation) was substituted with one restricting thedeterioration of the neutralizing capacity of the soil, ANC le(crit) = 0. These tests illustrate the variabilityof the critical load values for acidity that can be introducedby changing the criterion or by varying the calculation method,without, however, representing the extreme values of criticalloads that could be derived.  相似文献   

12.
This paper aims to calculate the energetic and environmental effects of an integrated solid waste management system in Palermo, Italy. In particular, the thermal treatment of Municipal Solid Waste (MSW) with energy recovery is assessed. The current characterization at the local scale is taken into account. Two different options of collection are taken into account: (1) unselected wastes; and (2) sorted collection, according to the current Italian regulation. Combustion process is analyzed and the following features are calculated: (1) stoichiometric content of air and air excess; and (2) temperature and enthalpy of flue gases. Energy recovery is performed in the hypothesis of Hirn cycle both with steam condensation to produce only power, and with bleeding cycle for the combined production of power and thermal energy. Total electric efficiency is assumed as representative index of the technological level of the assessed plant. Results show that the thermal treatment of selected MSW, associated with a cogenerative recovery of energy, represents a relevant sustainable strategy of waste valorization as an alternative to fossil fuels.  相似文献   

13.
The critical loads concept is used by the UN-ECEConvention on Long Range Transboundary Air Pollution(CLRTAP) for setting pollution reduction targets.Increasing numbers of countries are adopting the SimpleMass Balance equation (SMB) to calculate critical loads ofacidifying S and N for forest soils. The equation is madeup of a series of mass balances each of which is used tocalculate a leaching flux. The assumptions in the SMBequation were investigated by testing its ability topredict current sulphur load and by comparing each of thecalculated leaching fluxes to measured rates. It was notpossible to predict current sulphur load at our sites usingthe SMB equation. The leaching tests demonstrated that,primarily due to its steady state assumptions, the SMBequation generates critical loads that are theoretical longterm estimates of risk, and are untestable. Thesimplifying assumptions sometimes lead to illogicalresults. Some of these can be improved by adding a final,simple but dynamic, calculation step to determine theexpected time until effects are observed. Theacceptability of combining annual average data, which bestapproximates steady state, with a biological indicator isquestionable. It is not possible to test critical loadscalculated using the SMB equation when applied with all ofits assumptions but it is possible to test its fundamentalapproach using non steady state data.  相似文献   

14.
Critical loads have been used to develop international agreements on acidifying air pollution abatement, and within the UK and other countries, to develop national policies for pollution abatement. The Environment Agency (England and Wales) has regulatory obligations to protect sites of high conservation value from the threat of acidification, and hence requires a practical methodology for acidification assessments at the site-specific scale. The Environment Agency has therefore posed the question: Are the national critical load exceedance models sufficiently robust to form the basis for methods to assess harm to individual sites or are they only useful for national policy development? In order to provide one measure of the appropriateness of applying the models at the site-specific scale we incorporated estimates of uncertainty in both national and site-specific data into the calculation of critical load exceedance for individual sites. The exceedance calculations use data from a wide range of sources and the accuracy of the exceedance will be influenced by the accuracy of the input data sets. Using Monte Carlo methods to incorporate the uncertainty in the input data sets into the calculation a distribution of critical load exceedance values is generated rather than a single point estimate. This paper compares uncertainty analyses for coniferous forested sites in England and Wales using both national scale and site-specific data sets and uncertainty ranges.  相似文献   

15.
This paper examines the evaluation of a waste management project’s alternatives through a quantitative risk analysis. Cost benefit analysis is a widely used method, in which the investments are mainly assessed through the calculation of their evaluation indicators, namely benefit/cost (B/C) ratios, as well as the quantification of their financial, technical, environmental and social risks. Herein, a novel approach in the form of risk-based multi-criteria assessment (RBMCA) is introduced, which can be used by decision makers, in order to select the optimum alternative of a waste management project. Specifically, decision makers use multiple criteria, which are based on the cumulative probability distribution functions of the alternatives’ B/C ratios. The RBMCA system is used for the evaluation of a waste incineration project’s alternatives, where the correlation between the criteria weight values and the decision makers’ risk preferences is analyzed and useful conclusions are discussed.  相似文献   

16.
This paper examines the potential of integrated waste and utility power management over the mid-term planning horizon in Japan. Energy recovery and CO2 emission reduction were estimated under two situations: (1) energy recovery efforts within the current waste management/power generation framework and (2) integrated waste management with sewage treatment systems and electric power industries. Scenario simulation results showed that under the current policy framework it is not feasible to achieve large energy recovery and CO2 emission reduction, while the integrated waste management scenarios show the potential of large energy recovery which is equivalent to about an 18 million t-CO2 emission reduction. The utilization of dry wastes for power generation at existing fossil power stations is significant in achieving the result. We also consider the effects of the ‘CO2 emission per GW generated’ for electric power generation on the total CO2 emission reduction because it varies by country and assumptions selected. Although this research did not include an economic analysis, based on estimated CO2 emissions and energy recovery, the integrated scenarios indicate a large potential in countries that have high dependence of fossil power generation and relatively low power generation efficiency.  相似文献   

17.
The debate on different waste management practices has become an issue of utmost importance as human activities have overloaded the assimilative capacity of the biosphere. Recent Italian law on solid waste management recommends an increase in material recycling and energy recovery, and only foresees landfill disposal for inert materials and residues from recovery and recycling. A correct waste management policy should be based on the principles of sustainable development, according to which our refuse is not simply regarded as something to eliminate but rather as a potential resource. This requires the creation of an integrated waste management plan that makes full use of all available technologies. In this context, eMergy analysis is applied to evaluate three different forms of waste treatment and construct an approach capable of assessing the whole strategy of waste management. The evaluation included how much investment is needed for each type of waste management and how much "utility" is extracted from wastes, through the use of two indicators: Environmental yield ratio (EYR) and Net eMergy. Our results show that landfill is the worst system in terms of eMergy costs and eMergy benefits. Composting is the most efficient system in recovering eMergy (highest EYR) from municipal solid waste (MSW) while incineration is capable of saving the greatest quantity of eMergy per gram of MSW (highest net eMergy). This analysis has made it possible to assess the sustainability and the efficiency of individual options but could also be used to assess a greater environmental strategy for waste management, considering a system that might include landfills, incineration, composting, etc.  相似文献   

18.
Aluminium (Al) is a key element in critical loadcalculations for forest. Here, we argue for re-evaluating theimportance of Al. Effects of two levels of enhanced Alconcentrations and lowered Ca:Al ratios in the soil solutionin a field manipulation experiment in a mature spruce stand(1996–1999) on tree vitality parameters were tested. Inaddition, Al solubility controls were tested. Various loads ofAl were added to forest plots by means of an irrigationsystem. Potentially toxic Al concentrations and criticalratios of Ca to inorganic Al were established. The ratio of Cato total Al was not a suitable indicator for unfavourableconditions for plant growth. No significant effects on crowncondition, tree growth and fine root production were observedafter three years of treatment. In 1999, foliar Mg content inthe highest Al addition treatment had declined significantly.This agreed with the known response to Al stress of seedlingsin nutrient solution experiments. No support was found forusing the chemical criterion Ca:Al ratio in soil solution,foliar and root tissue as an indicator for forest damage dueto acidification. Al solubility was considerably lower thanimplied by the assumption of equilibrium with gibbsite,particularly in the root zone. The gibbsite equilibrium iscommonly used in critical load models. Substitution of thegibbsite equilibrium with an Al-organic matter complexationmodel to describe Al solubility in soil water may have largeconsequences for calculation of critical loads. The resultsindicate that critical load maps for forests should bereconsidered.  相似文献   

19.
Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include “incineration”, “steam sterilization”, “microwave” and “landfill”. The results obtained using the proposed approach are analyzed in a comparative way.  相似文献   

20.
The objective of this study is to provide a calculation of recycling rates of waste home appliances in Taiwan, for the EPA to amend these rates in order to increase the recycling efficiency. The recycling rate is calculated by a formula according to the statistical results obtained through: (1) an estimation of domestic use of home appliances using time series analysis with multiplicative seasonal ARIMA model, (2) a further estimation of generated waste home appliances based upon the estimated domestic use and the corresponding distribution of lifetime span, and (3) a cost analysis of recycling home appliances based on a sampling survey with stratified systematic sampling conducted among collectors and a survey on five recycling plants of waste home appliances. The suggested recycling rates in this study finally used by the EPA show that all of the recycling rates have increased compared with the rates in previous years. This study also implies that amending the recycling rates may only solve some recycling problems temporarily; however, the recycling system of waste home appliances in Taiwan has to be reformed to increase the recycling efficiency for the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号