首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Reclaimed water was successfully used to recover the dry Chaobai River in Northern China, but groundwater may be polluted. To ensure groundwater protection, it is therefore critical to identify the governing factors of groundwater chemistry. Samples of reclaimed water, river and groundwater were collected monthly at Chaobai River from January to September in 2010. Fifteen water parameters were analyzed. Two kinds of reclaimed water were different in type (Na-Ca-Mg-Cl-HCO3 or Na-Ca-Cl-HCO3 ) and concentration of nitrogen. The ionic concentration and type in river were similar to reclaimed water. Some shallow wells near the river bed had the same type (Na-Ca-Mg-Cl-HCO3 ) and high concentration as reclaimed water, but others were consistent with the deep wells (Ca-Mg-HCO3 ). Using cluster analysis, the 9 months were divided into two periods (dry and wet seasons), and all samples were grouped into several spatial clusters, indicating different controlling mechanisms. Principal component analysis and conventional ionic plots showed that calcium, magnesium and bicarbonate were controlled by water-rock interaction in all deep and some shallow wells. This included the dissolution of calcite and carbonate weathering. Sodium, potassium, chloride and sulfate in river and some shallow wells recharged by river were governed by evaporation crystallization and mixing of reclaimed water. But groundwater chemistry was not controlled by precipitation. During the infiltration of reclaimed water, cation exchange took place between (sodium, potassium) and (calcium, magnesium). Nitrification and denitrification both happened in most shallow groundwater, but only denitrification in deep groundwater.  相似文献   

2.
A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn2 + as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO43 − and Zn2 + when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result.  相似文献   

3.
Fertilizer input for agricultural food production, as well as domestic and industrial surface water pollutants in the North China Plain, increases pressures on locally scarce and vulnerable water resources. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC, a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8 mg/L NH4-N and 6.8 mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8 mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320 kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6 mg/L NH4-N and 1.8 mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite this current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.  相似文献   

4.
Evaluation of denitrification capacities is necessary to develop a sustainable manure management system in order to reduce NO3 leaching and N2O emissions from agricultural soils. Denitrification rates were measured using the acetylene inhibition technique on intact soil cores from eight Andosols under three different cropping systems in an intensive livestock catchment of central Japan. The N application rates ranged from 200 to 800 kg N ha−1 yr−1. The denitrification rates were highly variable across fields, and were influenced significantly by land uses and manure forms. Compared with upland fields, paddy rice fields had a greater denitrification rate up to 1380 and 85 mg N m−2 day−1 in the top 30-cm soil layer during flooding and non-flooding periods, respectively. In upland fields, the maximum value for the top 30-cm soils was 44 mg N m−2 day−1 and most of the rates were less than 10 mg N m−2 day−1. The greater denitrification rates were often associated with slurry application rather than composted dry manure. Overall, denitrification from Andosols in this study displayed a lower capacity than that of non-Andosols.  相似文献   

5.
To increase the knowledge on the particulate matter of a wetland in Beijing, an experimental study on the concentration and composition of PM10 and PM2.5 was implemented in Beijing Olympic Forest Park from 2013 to 2014. This study analyzed the meteorological factors and deposition fluxes at different heights and in different periods in the wetlands. The results showed that the mean mass concentrations of PM10 and PM2.5 were the highest at 06:00–09:00 and the lowest at 15:00–18:00. And the annual concentration of PM10 and PM2.5 in the wetland followed the order of dry period (winter) > normal water period (spring and autumn) > wet period (summer), with the concentration in the dry period significantly higher than that in the normal water and wet periods. The chemical composition of PM2.5 in the wetlands included NH4+, K+, Na+, Mg2 +, SO42 −, NO3, and Cl, which respectively accounted for 12.7%, 1.0%, 0.8%, 0.7%, 46.6%, 33.2%, and 5.1% of the average annual composition. The concentration of PM10 and PM2.5 in the wetlands had a significant positive correlation with relative humidity, a negative correlation with wind speed, and an insignificant negative correlation with temperature and radiation. The daily average dry deposition amount of PM10 in the different periods followed the order of dry period > normal water period > wet period, and the daily average dry deposition amount of PM2.5 in the different periods was dry period > wet period > normal water period.  相似文献   

6.
选择典型非常规水源补给城市河流(凉水河)为研究对象,阐述了凉水河典型河段水体中营养元素(氮、磷)的时空分布特征,并评价其富营养化状态.为期1年的监测结果表明:研究河段水体中TN、TP平均质量浓度分别为25.70 mg·L-1和1.78 mg·L-1,分别为地表水Ⅴ类标准的12.9倍和8.9倍.在时间尺度上,凉水河研究河段水体中TN、NH+4-N质量浓度冬季较高,夏季反而较低;水体中TP和SRP质量浓度全年基本一致.在空间尺度上,水体中TN和NH+4-N质量浓度变化趋势随土地利用类型变化趋于一致,均在城镇区域沿河流方向逐渐上升,至农村区域平缓波动;水体中TP和SRP质量浓度均沿河流方向呈逐渐上升趋势.通过计算对数型幂函数普适指数,发现凉水河研究河段无论是在时间尺度还是空间尺度均处于"极富"营养状态(EI=93.49),富营养化现象已十分严峻.  相似文献   

7.
王凤康  梁作兵  于正良  江泽丽 《环境科学》2014,35(10):3716-3721
通过对降雨条件下重庆雪玉洞地下河水文地球化学指标的监测,发现各种指标对降雨响应迅速,且存在相关性.采用主成分分析对各指标数据进行处理,提取能代表82.761%信息量的3个主成分,来分析降雨条件下岩溶地下河水文地球化学的特征及其成因.结果表明,以全Fe、全Mn、Al3+等浓度升高为代表的土壤淋失和以K+、Na+、Sr2+浓度降低、EC下降为代表的稀释效应,对水文地球化学特征变化的贡献率为41.718%,降雨加剧了岩溶区土壤的侵蚀,同时危及饮用水的安全,应引起相关部门的足够重视;岩溶水对白云岩的溶解和补给区农业活动、洞穴生物对水文地球化学特征变化的贡献率为29.958%;以Ca2+浓度升高为代表的岩溶水对灰岩的溶蚀作用对水文地球化学特征的贡献率为11.084%.  相似文献   

8.
Long-term manure-borne copper and zinc inputs (18-324 mg Cu m−2 yr−1 and 100-800 mg Zn m−2 yr−1) to grassland soils resulted in their catchment in water concentrations that often exceeded the surface water quality criteria (2 μg Cu l−1 and 5 μg Zn l−1). This paper compares retention and release of Cu and Zn by two types of soil, a mineral soil (MS) and a dark colored soil rich in organic matter (OS). On the basis of dry soil mass, the OS has a higher retention/affinity for Cu and Zn than the MS, but much less Zn accumulated in the MS when compared on an areal basis. This is largely because of the much smaller bulk OS density and larger dissolved metal concentrations in the OS drainage than that for the MS. However, because of the greater water retention capacity of the OS, elevated metal concentrations in the soil solution do not necessarily cause greater loss to water. It is concluded that artificially drained OS can contribute significantly to the observed elevated Cu and Zn concentrations of the river, especially during relatively dry weather conditions when the contribution of water seeping from OS to the total river water discharge becomes increasingly important.  相似文献   

9.
Photodegradation (PD) of methylmercury (MMHg) is a key process of mercury (Hg) cycling in water systems, maintaining MMHg at a low level in water systems. However, we possess little knowledge of this important process in the Jialing River of Chongqing, China. In situ incubation experiments were thus performed to measure temporal patterns and influencing factors of MMHg PD in this river. The results showed that MMHg underwent a net demethylation process under solar radiation in the water column, which predominantly occurred in surface waters. For surface water, the highest PD rate constants were observed in spring (12 × 10− 3 ± 1.5 × 10− 3 m2/E), followed by summer (9.0 × 10− 3 ± 1.2 × 10− 3 m2/E), autumn (1.4 × 10− 3 ± 0.12 × 10− 3 m2/E), and winter (0.78 × 10− 3 ± 0.11 × 10− 3 m2/E). UV-A radiation (320–400 nm), UV-B radiation (280–320 nm), and photosynthetically active radiation (PAR, 400–700 nm) accounted for 43%–64%, 14%–31%, and 16%–45% of MMHg PD, respectively. PD rate constants varied substantially with the treatments that filtered the river water and amended it with chemicals (i.e., Cl, NO3, dissolved organic matter (DOM), Fe(III)), which reveals that suspended particulate matter and water components are important factors in affecting the PD process. For the entire water column, the PD rate constant determined for each wavelength range decreased rapidly with water depth. UV-A, UV-B, and PAR contributed 27%–46%, 6.2%–12%, and 42%–65% to the PD process, respectively. PD flux was estimated to be 4.7 μg/(m2·year) in the study site. Our results are very important to understand the cycling characteristics of MMHg in the Jialing River of Chongqing, China.  相似文献   

10.
从天然河水中富集分离出8株异养硝化-好氧反硝化(HN-AD)菌株.将单菌株根据其自身的种属类别及脱氮性能复配成5种由不同菌株构成的菌剂,优选出脱氮效果最佳的复配菌剂-2,其包括6株菌株,分别为Pseudomonas stutzeri MR1,Pseudomonas sp. MR2,Pseudomonas sp. MR3,Pseudomonas balearica MR4,Klebsiella variicola MR6和Catellibacterium terrae MR8.将复配菌剂-2投加至CODCr/TN比分别为20和5的河水中,其对NO3--N的去除率分别为87.1%和97.5%,期间无NO2--N积累;对NH4+-N去除效果在第1 d分别达到96.6%和57.6%.复配菌剂可以获得对河水较高的反硝化脱氮效率,并可以强化河水中NH4+-N的去除,对实际河水的脱氮净化具有较强的应用潜能.  相似文献   

11.
潮白河再生水生态补给河道区浅层地下水氮转化   总被引:2,自引:0,他引:2       下载免费PDF全文
再生水与天然地下水水质存在差异,利用再生水生态补给河道区可能会带来环境风险.引温济潮工程已运行10余年,为研究再生水长期河道入渗下不同位置地下水氮组分的演化特征与机制,收集近11年的地表水与地下水监测资料.采用聚类分析将地表水划分为不同区域后选择典型地下水监测点分析氮组分的演化差异,并利用Cl-计算混合比得出地下水中目标成分的计算浓度,初步推测地表水入渗后发生的氮转化,并选取DO、TOC、底泥、水文地质条件等环境指标分析证明.结果表明:①地表水明显分为3组,包括减河、土坝以北潮白河段、土坝以南潮白河段,各组间指标存在显著差异,影响水质差异的主要因素为再生水的氮、磷含量及水体流态.②再生水入渗过程中,包气带或黏土层较厚有利于氮的去除,减河和土坝以北潮白河段地表水中的NO3--N流经包气带时通过反硝化与同化作用衰减,NH4+-N通过吸附与硝化作用得以去除,入渗后未引起地下水中的氮浓度明显增加.③而土坝以南潮白河段,河道补水后翌年地下水位抬升并趋于稳定,长期地表水入渗使底泥的氮和有机质含量升高,使得该断面于2013年后达到适宜的碳氮比而发生有机氮矿化作用,由于包气带较薄,生成的NH4+-N较少吸附于土壤介质中,易随水流入渗而引起地下水中ρ(NH4+-N)升高.研究显示,再生水入渗过程中,包气带或黏土层较厚可有效去除氮组分,但部分地区包气带较薄且发生有机氮矿化作用会增加地下水的氮污染风险.   相似文献   

12.
Since the ammonia in the effluent of the traditional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4 +-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the removing rate of NH4 +-N was related to the influent concentration of NH4 +-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4 +-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen (DO) in the influent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrification in BACF was the influent DO. When the influent NH4 +-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accumulation of the denitrification intermediates such as NO2 . In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone. __________ Translated from Environmental Science, 2006, 27(1): 69–73 [译自: 环境科学]  相似文献   

13.
为探究深水水库沉积物微生物功能特征及利用价值,于2019年在实验室对小湾水库表层沉积物微生物进行了驯化分离,并分析了其中一株细菌的脱氮效率.结果表明,分离出的细菌XW731经鉴定属于假单胞菌属(Pseudomonas sp.),是一种贫营养型好氧反硝化菌;在分别以NH4+-N、NO3--N和NO2--N为唯一氮源时,该菌对NH4+-N、NO3--N和NO2--N去除率分别为33.6%、68.5%和9.1%;以NH4+-N和NO3--N为氮源时,对NH4+-N和NO3--N去除率分别为66.4%、89.6%,同步硝化反硝化能力更强.将该菌投加到两种城市微污染水体后测试表明,该菌对城市河道水体的NH4+-N和NO3--N去除率分别为38.3%和42.4%,对城市降雨水体的NH4+-N和NO3--N去除率分别为22.2%和7.7%.  相似文献   

14.
随着水电开发的迅速兴起,河流筑坝拦截引起的生态环境效应已不容忽视。为探究筑坝拦截对流域内营养元素生物地球化学循环过程的影响,本研究于2016年1月和7月对嘉陵江中下游4座梯级水库的入库、库内及出库水体进行采样,分析了营养盐(TDN、NO_2~-、NO_3~-、NH_4~+、DSi)及水化学组成;研究在大坝拦截作用下,嘉陵江流域水库水体营养盐及主要阴、阳离子浓度的时空变化特征。结果发现,沿程Na~+、K~+浓度上升的变化趋势表明从上游到下游人为因素的影响在不断加强。受降水稀释影响,TDN和DSi浓度枯水期(冬季)高于丰水期(夏季);剖面水体氮和硅的浓度呈现出表层低、深层高的特征,夏季尤为显著;NO_3~-浓度与NH_4~+和NO_2~-浓度存在负相关关系。上述结果表明氮的转化在表层水体以藻类的吸收同化为主,浅层水体以硝化反应为主,深层水体以反硝化反应为主。  相似文献   

15.
Nitrate-nitrogen(NO_3~--N) always accumulates in commercial recirculating aquaculture systems(RASs) with aerobic nitrification units. The ability to reduce NO_3~--N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen(DO)content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO_3~--N from RASs. The effect of dissolved oxygen(DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone(PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group(Group A, average DO concentration of 0.28 ± 0.05 mg/L), the low-oxygen treatment DO group(Group B, average DO concentration of 2.50 ± 0.24 mg/L) and the aerated treatment group(Group C, average DO concentration of 5.63 ± 0.57 mg/L). Feeding with 200 mg/L of NO_3~--N, the NO_3~--N removal rates were 1.53, 1.60 and 1.42 kg/m3PCL/day in Groups A, B and C, respectively. No significant difference in NO_3~--N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6 mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated.  相似文献   

16.
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility < l0 km and RH (relative humidity) < 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA (sulfate, nitrate, and ammonium) and SOA (secondary organic aerosol) concentrations. The average values with standard deviation of SO42 −, NO3, NH4+ and SOA were 49.8 (± 31.6), 31.4 (± 22.3), 25.8 (± 16.6) and 8.9 (± 4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO42 −, NO3, NH4+, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about 27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR (sulfur oxidation ratio) and NOR (nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO42 − and NO2 to NO3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.  相似文献   

17.
To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2 + > Mg2 + > K+ > Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.  相似文献   

18.
We predicted changes in yields and direct net soil greenhouse gas (GHG) fluxes from converting conventional to alternative management practices across one of the world's most productive agricultural regions, the Central Valley of California, using the DAYCENT model. Alternative practices included conservation tillage, winter cover cropping, manure application, a 25% reduction in N fertilizer input and combinations of these. Alternative practices were evaluated for all unique combinations of crop rotation, climate, and soil types for the period 1997-2006. The crops included were alfalfa, corn, cotton, melon, safflower, sunflower, tomato, and wheat. Our predictions indicate that, adopting alternative management practices would decrease yields up to 5%. Changes in modeled SOC and net soil GHG fluxes corresponded to values reported in the literature. Average potential reductions of net soil GHG fluxes with alternative practices ranged from −0.7 to −3.3 Mg CO2-eq ha−1 yr−1 in the Sacramento Valley and −0.5 to −2.5 Mg CO2-eq ha−1 yr−1 for the San Joaquin Valley. While adopting a single alternative practice led to modest net soil GHG flux reductions (on average −1 Mg CO2-eq ha−1 yr−1), combining two or more of these practices led to greater decreases in net soil GHG fluxes of up to −3 Mg CO2-eq ha−1 yr−1. At the regional scale, the combination of winter cover cropping with manure application was particularly efficient in reducing GHG emissions. However, GHG mitigation potentials were mostly non-permanent because 60-80% of the decreases in net soil GHG fluxes were attributed to increases in SOC, except for the reduced fertilizer input practice, where reductions were mainly attributed to decreased N2O emissions. In conclusion, there are long-term GHG mitigation potentials within agriculture, but spatial and temporal aggregation will be necessary to reduce uncertainties around GHG emission reductions and the delivery risk of the associated C credits.  相似文献   

19.
Dolomite lime(DL)(CaMg(OH)_4) was used as an economical source of Mg~(2+)for the removal and recovery of phosphate from an anaerobic digester effluent of a municipal wastewater treatment plant(MWWTP) wastewater. Batch precipitation results determined that phosphate was effectively reduced from 87 to less than 4 mg-P/L when the effluent water was mixed with 0.3 g/L of DL. The competitive precipitation mechanisms of different solids in the treatment system consisting of Ca~(2+)–Mg~(2+)–NH_4~+–PO_4~(3-)CO_3~(2-)were determined by comparing model predictions with experimental results. Thermodynamic model calculations indicated that hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2), Ca_4H(PO_4)_3?3H_2O, Ca_3(PO_4)_2(beta), and Ca_3(PO_4)_2(am2)were more stable than struvite(MgNH_4PO_3?6H_2O) and calcite(CaCO_3). However, X-ray diffraction(XRD) analysis determined the formation of struvite and calcite minerals in the treated effluent. Kinetic experimental results showed that most of the phosphate was removed from synthetic effluent containing NH_4~+within 2 hr, while only 20% of the PO_4~(3-)was removed in the absence of NH_4~+after 24 hr of treatment. The formation of struvite in the DL-treated effluent was due to the rapid precipitation rate of the mineral. The final pH of the DL-treated effluent significantly influenced the mass ratio of struvite to calcite in the precipitates. Because more calcite was formed when the p H increased from 8.4 to 9.6, a p H range of 8.0–8.5 should be used to produce solid with high PO_4~(3-)content. This study demonstrated that DL could be used for effective removal of phosphate from the effluent and that resultant precipitates contained high content of phosphate and ammonium.  相似文献   

20.
High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag+ (123.05 mg/g) and Pb2 + (227.70 mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号