首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

2.
同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程初步研究   总被引:7,自引:1,他引:7  
研究好氧颗粒污泥的同步硝化反硝化脱氮,寻找消除氮素对水体污染的途径。在反应器中培养了好氧条件下具有同步硝化反硝化功能的颗粒污泥,进行脱氮过程研究。好氧颗粒污泥为无载体结构,直径2~3 mm,其构成松隙,具有厌(兼)氧与好氧微生物生长代谢的环境;反应液中氨氮浓度为201 mg·L-1时,6 h反应周期内氨完全被氧化,出水中检测不到NO2--N,仅残留2 mg·L-1的N03一N,硝化与反硝化两个过程完成了脱氮反应,颗粒污泥中存在硝化细菌和反硝化细菌;改变反应器中进水有机物浓度,发现COD浓度越大,氮去除率越低,硝化细菌在高有机物浓度下反应活性受抑制,自养硝化细菌竞争氧及其他营养物质的能力弱于异养细菌;在好氧条件下(4 mgO2·L-1),进水中不加有机碳源,反应6 h后NH4+-N去除率达75%,反应过程中pH值下降,说明颗粒污泥中硝化细菌为自养型,硝化反应产酸降低反应器中pH值;在厌氧条件下,进水COD和NO3--N浓度分别为227.25 mg·L-1和103.63 mg·L-1,反应结束后,NO3--N去除率为74%,反应过程中pH值呈上升趋势,证明了好氧颗粒污泥中存在厌氧反硝化细菌,且反硝化细菌生长于颗粒污泥内部的厌氧区域,反硝化产碱使反应液pH值上升。  相似文献   

3.
在EGSB反应器中快速启动厌氧氨氧化(ANAMMOX)工艺,总氮去除速率为0.931±0.006 kg/(m~3·d),总氮去除效率为90.5%±0.8%。培养得到厌氧氨氧化颗粒污泥和絮状污泥混合物,污泥平均粒径为307.5μm。高质量浓度的NO_2~-(143.25 mg/L)抑制厌氧氨氧化菌活性;N_2H_4可强化厌氧氨氧化,但高质量浓度的N_2H_4抑制厌氧氨氧化菌活性;短期添加丙酸盐(COD质量浓度0~400 mg/L)对厌氧氨氧化速率几乎无影响;厌氧氨氧化速率随Fe~(3+)浓度(0~1.2 mmol/L)的增加而增加。  相似文献   

4.
以GAC颗粒污泥为接种污泥研究厌氧氨氧化EGSB反应器快速启动的条件及运行参数。反应器的启动在17 d内完成,总氮容积负荷达到1.62 kg/(m3·d)。采用缩短水力停留时间方式提高反应器负荷,14 d内反应器总氮容积负荷能快速升至1.45 kg/(m3·d),实验结果表明采用低基质浓度和缩短水力停留时间方式更利于厌氧氨氧化反应器的启动。第18~21 d平均产气速率为1.1 L/h,用气相色谱仪对EGSB反应器产生的气体进行分析,N2O、CO2平均体积分数分别为0.8%、0.02%,如何降低气体中N2O的浓度需要进一步研究。  相似文献   

5.
苯酚对硝化颗粒污泥性能的影响   总被引:1,自引:0,他引:1  
采用序批实验研究了苯酚对硝化颗粒污泥性能的影响.结果表明.苯酚的存在显著地降低了氨氮降解率,抑制了硝化颗粒污泥中氨氧化菌的活性和亚硝酸氧化菌的活性,显著地降低了氨氮的比降解速率和硝氮的比生成速率,降低了硝化颗粒污泥的硝化性能.苯酚去除后,硝化颗粒污泥中氨氧化菌的活性可以完全恢复,而亚硝酸氧化菌的活性不能完全恢复.苯酚的降解是硝化颗粒污泥中的好氧异养菌、硝化菌和厌氧的反硝化菌共同作用的结果.  相似文献   

6.
处理垃圾渗滤液好氧颗粒污泥的培养及其脱氮特性   总被引:1,自引:0,他引:1  
以垃圾渗滤液为试验用水,通过不断增加氨氮负荷(初始氨氮质量浓度从100 mg/L逐渐增加到180 mg/L)、并且适当投加外碳源的策略,在20 d内形成了好氧颗粒污泥,粒径为0.17 ~ 0.20 mm,到第109 d,好氧颗粒污泥粒径达到0.65 ~ 2.10 mm.在培养过程中由于氨氮质量浓度较高,水中游离氨(Free Ammonia,FA)抑制了亚硝酸氧化细菌(Nitrite-Oxidizing Bacteria,NOB)的活性,形成了短程硝化,并在第20~50d、第89~ 109 d发生了同步硝化反硝化(Simultaneous Nitrification and Denitrification,SN D),其中第89~109 d较为明显,在反应器内部C/N比为3.1~3.9情况下,总氮去除率稳定在70%左右.SEM显示好氧颗粒污泥存在大量孔隙,有利于底物输送.对培养过程中第1d、34 d、54 d、79 d、109 d的荧光原位杂交(Fluorescence In Situ Hybridization,FISH)结果进行统计分析,发现氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB)分别占总菌量的2.37%、5.54%、7.26%、16.32%、22.33%.冰冻切片FISH结果表明,AOB主要聚集在好氧颗粒污泥的最外层,有利于AOB利用并消耗液相主体中的溶解氧,同时在好氧颗粒污泥内部形成缺氧区,有利于内部实现反硝化.好氧颗粒污泥的粒径越大,内部缺氧区越大,越有利于实现SND.通过对胞外聚合物(Extracellular Polymer Substances,EPS)染色,发现好氧颗粒内部β-D-吡喃葡萄糖的空间分布为外层较多,并随着颗粒孔隙向内延伸,在次外层与内层不均匀分布,这很好地解释了好氧颗粒污泥反应器在好氧的运行方式下,发生SND的途径及碳源的可能来源.研究表明,利用好氧颗粒污泥处理垃圾渗滤液具有较高的氨氮去除率(97%以上),好氧颗粒污泥的形态及结构有利于AOB的富集,同时在其内部储存了碳源,有利于SND的发生.  相似文献   

7.
不同类型反应器好氧颗粒污泥培养过程研究   总被引:1,自引:0,他引:1  
在SBR、非理想PF及CSTR反应器中接种普通活性污泥,控制反应条件:溶解氧DO 2.0 mg/L左右,pH值8.0左右,温度(25±0.2)℃,经过80 d左右时间,3个反应器中均成功培养出好氧颗粒污泥,最大颗粒污泥粒径达到2.5 mm左右。成熟好氧颗粒污泥具有较好的COD去除及脱氮能力。SBR反应器COD去除率稳定在95%~97%,氨氮去除率超过92%;PF反应器COD去除率达到95%~98%,氨氮去除率最高为98%;CSTR反应器COD去除率稳定在88%~90%,氨氮去除率超过90%。SBR反应器TN去除率最高,达到70%~78%,PF反应器TN去除率为65%~70%,CSTR反应器TN去除率达到55%~62%。3个反应器均发生全程同步硝化反硝化。  相似文献   

8.
为了考察好氧颗粒污泥在酸性红14(Acid Red 14,AR14)废水中的形成以及降解AR14的能力,在序批式反应器(Sequencing Batch Reactor,SBR)内以蔗糖和AR14为底物培养好氧颗粒污泥.在第I阶段(1~75 d),采用单一好氧的运行方式,好氧颗粒污泥出现在第29 d,粒径为(0.16±0.04) mm.随着反应器内的COD逐步增加,好氧颗粒污泥的粒径逐步增大; 在此阶段AR14脱色率在5%左右,为吸附所致.在第II阶段(75~120 d),采用厌氧+好氧的方式运行,驯化好氧颗粒污泥降解AR14的能力.反应器中AR14的脱色率逐步上升,在第102 d时,脱色率达到89%,并稳定在此水平.在第120 d,污泥质量浓度达到10 548 mg/L,平均粒径也达到了(2.18±0.25) mm.此时好氧颗粒污泥的沉降性能良好,污泥容积指数稳定在38 mL/g.研究表明,可在AR14废水中成功培养获得好氧颗粒污泥且能稳定维持.蔗糖在第II阶段的厌氧反应过程中充当了AR14的共代谢底物,氧化还原电位(Oxidation Reduction Potential,ORP)在此过程中维持在-250~-300 mV,是偶氮染料生物厌氧降解过程的一个重要控制参数.  相似文献   

9.
以SRB颗粒污泥为载体的硫酸盐型厌氧氨氧化的启动研究   总被引:1,自引:0,他引:1  
采用复合式厌氧折流板反应器(HABR),研究先驯化硫酸盐还原菌(SRB)颗粒污泥、再以之为载体进行硫酸盐型厌氧氨氧化的启动,通过NH_4~+-N、SO_4~(2-)、COD等指标的变化探讨启动的效能。在7pH8.5、温度为(32±1)℃的条件下,采用低负荷启动方式,以CH_3COONa为有机碳源,通过逐步缩短HRT提高进水负荷来驯化培养硫酸盐还原菌颗粒污泥。结果表明,SO_4~(2-)与COD去除效果逐步达到稳定,最高去除率分别为86.2%和68.8%,S0全程积累并趋于稳定,经过60 d的驯化,SRB颗粒污泥平均粒径达到3 mm,硫酸盐还原反应启动成功。之后以驯化成熟的SRB颗粒污泥为载体,保持COD为50 mg/L,通过提高进水中NH+4-N和SO2-4负荷的方式启动硫酸盐型厌氧氨氧化。结果表明,NH_4~+-N和SO_4~(2-)去除效果逐步上升并稳定在50%以上,最高分别达到52.5%与53.7%。硫酸盐型厌氧氨氧化成功启动。  相似文献   

10.
以味精厂废水厌氧污泥混合普通活性污泥作为接种污泥,采用味精废水在SBR反应器内培养好氧颗粒污泥,通过预曝气调整进水负荷,经95 d成功培养出好氧颗粒污泥。培养出的颗粒污泥呈黄色,轮廓整齐,平均粒径为0.5 mm,对COD和氨氮的平均去除率高达91.8%和96.6%,反应器内SVI值保持在20mL/g左右,污泥质量浓度达8 000 mg/L左右。  相似文献   

11.
厌氧折流板反应器对餐饮污水的处理   总被引:1,自引:0,他引:1  
对厌氧折流板反应器(ABR)处理餐饮污水的工艺特性进行了实验研究.结果显示,当ABR稳定运行时, 该法对餐饮污水中CODCr、 SS、 NH3-N及TP的去除率分别为83.8%-92.15%、 75.42%-85.11%、 17.3%-37.2%、 8.9%-16.6%,出水中CODCr、SS指标均达到《污水综合排放标准》(GB8978-1996)一级标准,处理效果稳定,且具有优良的抗冲击负荷特性.此外,还对实验过程中ABR各隔室内颗粒污泥进行了特性分析.  相似文献   

12.
在序批式污泥厌氧反应器中探究了高铁酸钾对污泥破解及厌氧产酸的影响。实验结果表明高铁酸钾对污泥具有较强的破解性,当高铁酸钾的质量浓度由0 mg/L增加至16 mg/L时,溶解性COD与总COD的比值由6.2%升至35.6%。同时污泥液相中溶解性蛋白质的质量浓度由561 mg/L增加至1 365 mg/L。高铁酸钾的浓度与挥发性悬浮固体(VSS)的减量具有一定的线性关系。当高铁酸钾的质量浓度为8 mg/L时,污泥厌氧产挥发性脂肪酸最大,并且最大值为895 mg/L,其浓度是空白组2.56倍。  相似文献   

13.
以高固污泥为研究对象,探究了聚丙烯酰胺(PAM)对高固污泥厌氧消化产气的影响。实验结果表明,低浓度的PAM对污泥消化影响不明显,但当PAM质量浓度(以总固体SS计)超过20 g/kg时,PAM的存在会严重抑制污泥消化,并且当PAM的质量浓度由20 g/kg增加至80 g/kg时,污泥的最大甲烷产量(以VSS计)由184.4 m L/g下降至72.9 m L/g,溶解性化学需氧量(SCOD)最大质量浓度由20.1 g/L下降至8.5g/L。PAM的存在增加了分子间的团聚性,进而减少了发酵微生物与消化基质的接触。  相似文献   

14.
以污水处理厂初沉污泥和剩余污泥的混合物为发酵基质,建立连续流污泥厌氧反应器并评估了纳米二氧化钛对污泥厌氧消化产甲烷的慢性毒性影响。长期实验结果表明高浓度的纳米二氧化钛能够抑制甲烷的产生,且当二氧化钛的质量浓度为300 mg/L时,甲烷的最大产量(以VSS计)为132 m L/g,是空白组的81%。而低浓度的纳米二氧化钛对污泥产甲烷影响不明显。荧光原位杂交技术显示高浓度纳米二氧化钛作用下产甲烷古菌的数量小于低浓度作用下。此外高浓度纳米二氧化钛作用下与产甲烷相关酶的活性及乙酸钠的降解量均低于低浓度纳米二氧化钛作用下,然而活性氧和乳酸脱氢酶的释放量却高于低浓度作用下。  相似文献   

15.
磁场对厌氧活性污泥的生物活性影响研究   总被引:1,自引:0,他引:1  
研究了磁场对厌氧活性污泥的生物活性影响.使用场强为0、100、200、300、400 GS的磁场对样品分别作用10 min, 同时加以搅拌,通过测量各样品的pH值、ORP、电导率等考察其活性.结果表明, 磁场对厌氧活性污泥的活性存在着影响,并存在最佳值范围.本实验中,磁场场强为200 GS左右时,厌氧活性污泥的活性被明显强化.  相似文献   

16.
通过接种具有厌氧氨氧化性能的污泥,采用序批式厌氧反应器(ASBR)处理垃圾渗滤液,研究水力停留时间(HRT)、pH、温度等对厌氧氨氧化反应过程的影响并确定各因素的最佳控制范围。结果表明,在本试验条件下,HRT、pH和温度的适宜范围分别为24 h、7.5~8.5和35℃。在此条件下,进水NH~+_4-N浓度为150 mg/L,NO~-_2-N浓度为160 mg/L,COD浓度为300 mg/L时,出水NH~+_4-N、NO~-_2-N、TN、COD平均浓度分别为15.5 mg/L、0.01mg/L、43.2 mg/L和152.1 mg/L,相对应的平均去除率分别为89.7%、99.9%、86.1%和47.6%。  相似文献   

17.
介绍了利用纳米Fe强化污泥高效产甲烷的方法。实验结果表明,纳米Fe最佳投放量为6 g/L,相应的甲烷产量(以VSS计)为198 m L/g。机理研究表明,纳米Fe能够促进污泥水解、酸化,进而促进甲烷的积累。  相似文献   

18.
介绍了UASB反应器处理玉米淀粉废水的效果,分析了主要因素对处理效果的影响。淀粉废水处理实际工程的运行数据表明,UASB反应器处理玉米淀粉废水具有稳定的处理效果,COD去除率在83%以上,BOD5去除率在90%以上,出水满足后续好氧处理工艺的要求;有机负荷、pH值、碱度、出水循环、SO42-和悬浮物等是影响处理效果和颗粒污泥形成及其性质的几个关键因素。  相似文献   

19.
以A/O工艺排出的富磷剩余污泥为对象,通过两组厌氧消化反应器(1组目标,1组对照),对比研究了Mg(OH)2作为pH值调节剂对污泥厌氧消化过程氮磷释放的影响。结果表明,Mg(OH)2在促进污泥水解的同时,可以有效降低消化液中NH4+-N、PO34--P质量浓度。经过21 d消化,目标反应器中VSS比对照试验多削减10%,但上清液中NH4+-N、PO4--P质量浓度仅为对照的25%、10%。消化后污泥中灰分增加,导致污泥浓缩与脱水性能显著提高。  相似文献   

20.
低温处理生活污水的复合厌氧工艺研究   总被引:2,自引:1,他引:1  
两相厌氧技术与复合厌氧工艺的发展,使得低温(低于20 ℃)厌氧处理低浓度生活污水成为可能.设计了以上流式厌氧污泥床和滤层反应器为主体,添加污泥回流装置的两相复合厌氧处理新工艺,在室温(16~18 ℃)下处理生活污水.该两相复合厌氧处理工艺大大缩短了常规两相厌氧工艺的启动时间.在启动40 d后即能使低浓度生活污水的CODCr降低70%以上,SS去除率也能达到75%左右.该工艺的后续处理,建议选用人工湿地生态处理技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号