首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长沙浅层地热能资源调查与评价   总被引:2,自引:0,他引:2  
浅层地热能属于清洁能源,其开发利用在我国处于起步阶段。基于大量的野外调查与试验,对长沙浅层地热能开发进行适宜性评价,估算了浅层地热能热容量、可利用资源量以及开发潜力,讨论了其经济、环境效益。实测长沙浅层地温梯度介于0.69 ℃/100 m~1.98 ℃/100 m,平均为1.40 ℃/100 m。浅层地热能总热容量约3.34×1014 kJ/℃,可利用资源量达3.55×1014 kJ/a。研究区第四系松散岩类沉积物厚度较薄,对浅层地热能储量几乎没有影响。长沙适宜选择地埋管地源热泵系统开发浅层地热能,其适宜区面积占62.6%,较适宜区占33.9%。地埋管地源热泵系统冬、夏季换热功率分别为1.25×107和1.66×107 kW,开发潜力分别为(4.22±0.31)×105 m2/km2和(3.82±0.17)×105 m2/km2。据估算,浅层地热能开发可为长沙节省标准煤1.21×107 t/a,减少CO2排放约2.89×107 t/a,并减轻大气污染。发展浅层地热能有利于实现节能减排目标,为长沙的可持续发展提供保障。  相似文献   

2.
据悉,截至2011年3月,我国应用浅层地温能供暖制冷的建筑项目2236个,地源热泵供暖面积达1.4亿m2,80%的项目集中在北京、天津、河北、辽宁、河南、山东等地区。在北京,利用浅层地温能供暖制冷的建筑约有3000万m2,沈阳则已超过6000万  相似文献   

3.
《资源调查与环境》2017,(4):314-320
根据福清平原地下水系统的水文地质机制,在概化该区地下水系统水文地质概念模型的基础上,首次建立福清平原地下水可采资源量评价三维数值模型。根据福清平原地下水含水层水位控制要求,预测该区地下水可采资源量,在相对富水区域圈定地下水应急水源地,并评价水源地的应急开采量。结果表明,福清平原地下水可采资源量为1 189.35×10~4 m~3/a,并圈定出洋梓村谢厝山山前水源地和龙山街道塘头村北侧水源地2处地下水应急水源地,2处应急水源地应急可开采资源量为246.375×10~4 m~3/a,为福清平原地下水应急水源地建设提供参考。  相似文献   

4.
2014年在新疆和田市城区分冬、春、夏、秋4个季节采集大气PM2.5样品,分析了其中16种多环芳烃(PAHs)的含量、组成和来源,并评估了其致癌风险。结果表明:PAHs浓度年均值为99.02 ng/m~3,且具有明显的季节性分布,即冬季(241.52 ng/m~3)秋季(87.50ng/m~3)春季(30.81 ng/m~3)夏季(10.39 ng/m~3),冬季苯并[a]芘(Ba P)的浓度高达16.57 ng/m~3;全年PAHs以4~6环为主,冬季4环PAHs比例(46.03%)明显高于夏季的比例(15.97%),表明气粒两相分配对PAHs分布有显著影响。PAHs浓度与气温和风速显著负相关,与相对湿度显著正相关,表明相对低的气温和风速、相对高的湿度是冬季PAHs污染较高的重要原因。特征比值法源解析结果显示,PAHs主要来源于燃烧源,其中冬季PAHs来源以燃煤及薪柴燃烧为主,春、秋季以燃煤源和交通源的混合污染来源为主,夏季以交通源为主。后向轨迹分析表明,除和田市东北部的局地输送外,来自中亚、西亚其他国家外部输入的气团也对和田市城区PAHs有重要影响。苯并[a]芘毒性当量浓度(Ba P_(eq))年均值为10.51 ng/m~3,终身呼吸性肺癌风险(CR)为9.14×10~(-4),是美国环保署(USEPA)可接受致癌风险指数的9.14倍,表明和田市城区居民具有一定的潜在健康风险。  相似文献   

5.
为预防交通事故中油箱燃爆危险的发生,利用摄像机、高速照相机和红外热成像仪观测油箱在烤燃过程中的燃爆特性,得到爆炸火球参数和油箱内部温度变化,并针对油箱烤燃的危险性,利用爆炸火球辐射总能量和热剂量来评判热效应严重程度。结果表明:明火烤燃状态17min左右,油箱发生爆炸;爆炸火球的体积、表面最高温度和辐射总能量分别为150.46m~3、1 490.4℃和2.10×10~4kJ,距爆炸火球中心1m、5m和10m处的热剂量分别为1 978.8kJ/m~2、99.4kJ/m~2和25.1kJ/m~2。最后,从油箱本质安全设计和点火源控制方面提出了相应的安全对策与措施。  相似文献   

6.
京津冀地区散烧煤与电采暖大气污染物排放评估   总被引:1,自引:0,他引:1       下载免费PDF全文
徐钢  王春兰  许诚  白璞 《环境科学研究》2016,29(12):1735-1742
散烧煤供暖是一种污染物排放量大、一次能源利用效率低的供暖方式,亟需寻找一种新的供暖方式替代散烧煤供暖.在对比评估散烧煤与电煤各种主要污染物排放量的基础上,提出直接电采暖和低温空气源热泵两种替代散烧煤供暖方案,以缓解京津冀地区大气污染,并对改造前后的污染物排放量和技术经济性进行分析;从区域污染物综合减排的战略角度提出对京津冀地区原散烧煤采暖用户进行低温空气源热泵供暖改造和燃煤电厂执行“超净排放”改造两种方案,并对两种方案的污染物减排效果进行了对比.结果表明:单位散烧煤的污染物排放量远高于电煤,其中散烧煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为17.12、2.80、6.37和9.80 g/kg,电煤的SO2、NOx、烟尘和综合PM2.5排放因子分别为0.43、0.85、0.17和0.47 g/kg,散烧煤对综合PM2.5的贡献是电煤的20.9倍;直接电采暖和低温空气源热泵供暖均能有效减少污染物排放量,其中直接电采暖可使每户每年采暖期的SO2、NOx、烟尘和综合PM2.5分别减排66.38、7.15、24.79和36.96 kg,而采用低温空气源热泵的减排量分别为67.79、9.97、25.35和38.52 kg,但直接电采暖方式的一次能源利用效率(仅为33.7%)极低,因此不适合大面积推广;京津冀地区原散烧煤采暖用户在进行低温空气源热泵供暖改造后,其SO2、NOx、烟尘和综合PM2.5年减排量分别为24.47×104、3.60×104、9.15×104和13.91×104 t,燃煤电厂执行“超净排放”改造后相应年减排量分别为1.28×104、4.25×104、1.30×104和2.31×104 t,其中低温空气源热泵供暖改造后的综合PM2.5减排量达到燃煤电厂改造的6.0倍,并且年投资也较燃煤电厂改造低约4×108元.研究显示,采用低温空气源热泵供暖在污染物减排量、技术经济性和实施可行性等方面均具有优势.   相似文献   

7.
利用大气主动采样技术对宁东能源化工基地大气PM_(2.5)中硝基多环芳烃(NPAHs)的污染特征、一次排放和二次形成源贡献及呼吸暴露风险进行了观测研究.结果表明,宁东能源化工基地大气PM_(2.5)中Σ _(12)NPAHs质量浓度在2. 06~37. 14ng·m~(-3)之间,其中基于能源产业的宝丰采样点冬、夏季采样期Σ _(12)NPAHs的平均质量浓度分别为(25. 57±5. 76) ng·m~(-3)和(6. 22±1. 74) ng·m~(-3).以化工、电力产业为主的英力特采样点冬、夏季Σ _(12)NPAHs平均质量浓度分别为(7. 13±1. 44)ng·m~(-3)和(2. 58±0. 39) ng·m~(-3),两采样点均表现出冬季高于夏季的季节特征,推测为冬季取暖造成较高的NPAHs一次排放所致.宝丰采样点Σ _(12)NPAHs浓度水平明显高于英力特,可能与宝丰的煤炭开采及焦炭生产的能源产业较化工产业造成更高的NPAHs一次排放相关,因而造成了Σ _(12)NPAHs浓度水平的空间差异.两个采样点PM_(2.5)中Σ _(12)NPAHs浓度的夜昼比表明,夏季Σ _(12)NPAHs浓度日间明显高于夜间而冬季则相反,表明夏季日间较夜间存在更活跃的大气光化学反应,较夜间贡献更多二次形成的NPAHs. NPAHs族谱特征的时空差异表现为:宝丰和英力特采样点冬夏季均以一次排放标识物2N-FLO和6N-CHR为主要占比,其中宝丰采样点冬季2N-FLO和6N-CHR总占比为46%,夏季为73%,英力特采样点冬季总占为59%,夏季为55%.但英力特采样点夏季二次形成的标识物3N-PHE浓度占比较宝丰更高,表明基于化工产业的英力特较宝丰存在更高的前体物排放,由此贡献更多二次形成的NPAHs.本研究还借助Σ _(12)NPAHs/Σ _(16)PAHs比值对NPAHs可能的来源贡献进行了分析研究,结果表明宁东能源化工基地夏季较高的温度促进了PAHs的降解以及NPAHs的二次形成,较冬季贡献更多二次形成源的NPAHs.基于BaP等效毒性因子评价法估算了PM_(2.5)中Σ _5NPAHs的呼吸暴露肺癌风险,结果表明,宝丰采样点PM_(2.5)中Σ _5NPAHs的肺癌风险值冬季为(3. 06×10~(-5)±1. 36×10~(-5)),夏季为(1. 79×10~(-5)±0. 80×10~(-5)),英力特采样点冬季为(2. 85×10~(-5)±1. 20×10~(-5)),夏季为(1. 86×10~(-5)±0. 83×10~(-5)).宝丰和英力特肺癌风险值均高于Cal/EPA规定的1. 00×10~(-5)的限值,表明宁东能源化工基地人群存在一定程度的大气PM_(2.5)中NPAHs呼吸暴露肺癌风险.  相似文献   

8.
东海浮游多毛类的时空分布   总被引:3,自引:0,他引:3  
根据1997~2000年东海23°30′~33°00′N、118°30′~128°00′E海域4个季节海洋调查资料,探讨了东海浮游多毛类数量变化、相应的动力学过程及与渔场的关系。结果表明:浮游多毛类秋季平均丰度为23.68×10-2/m3,夏季8.59×10-2/m3,冬季5.80×10-2/m3,春季最低(1.20×10-2/m3);温度在多毛类丰度的季节变化中起主要作用,盐度次之。除了秋季,其他季节多毛类丰度平面分布较为均匀。多毛类的数量波动,与东海暖流势力消长和沿岸水有密切的联系,也同暖流势力从夏季到秋季维持一段时间有密切关系。  相似文献   

9.
2013年1月12日~2013年1月23日和2014年8月10日~2014年8月21日在成都市城东成都理工大学校园内按昼夜采集PM_(2.5)样品,分析了PM_(2.5)样品的质量浓度、9种水溶性无机离子含量和硝酸盐的δ~(15)N和δ~(18)O。结果表明,采样期间成都市PM_(2.5)冬、夏季的质量浓度分别为161~677μg/m~3(360±118μg/m~3)和87~137μg/m~3(92±18μg/m~3),冬季超标2~9倍,属于重度污染,夏季超标1~2倍,属于轻度污染; SO_4~(2-)、NO_3~-和NH_4~+(SNA)的质量浓度占总水溶性无机离子和PM_(2.5)质量浓度的比值冬夏季分别为72%±14. 3%和65%±9. 2%,21. 1%±2. 5%和30. 3%±6. 9%,是主要的无机离子组分。结合离子相关性分析,SNA的存在形式在白天以(NH_4)_2SO_4或NH_4HSO_4为主,部分以NH_4NO_3的形式存在,而在夜间则以NH_4NO_3为主,部分以(NH_4)_2SO_4或NH_4HSO_4形式存在。成都市PM_(2.5)中硝酸盐的δ~(15)N和δ~(18)O呈冬季高、夏季低的特征。冬季,硝酸盐来源于燃煤和机动车尾气;夏季,硝酸盐来源于机动车尾气、燃煤和农业土壤释放,根据其[NO_3~-]/[SO_4~(2-)]值说明成都市冬夏季均以固定污染源(燃煤)为主,移动污染源(机动车尾气)为辅。成都市冬季大气颗粒物中硝酸盐主要由NO_x经O_3氧化形成,夏季主要经·OH氧化形成硝酸盐或N_2O_5水解生成硝酸盐。  相似文献   

10.
考虑南方季节性河流年内径流分布严重不均的问题,依据1951—2015年长江荆南三口5站实测原型年径流量序列,采用Mann-Kendall等方法检测其径流序列的突变年份,通过GEV概率密度最大流量、汛期最小输沙量等方法分别计算了荆南三口河道内生态需水量、输沙需水量和水质净化需水量。结果表明:(1)水文序列的突变年份判别为1970年,由此将水文序列划分为变异前(1951—1970年)和变异后(1971—2015年)两段。(2)水文变异前,河道内年生态需水量、输沙需水量和水质净化需水量分别为1239.27×10~8m~3、910.01×10~8m~3、425.70×10~8m~3;水文变异后,河道内年生态需水量、输沙需水量和水质净化需水量分别为563.32×10~8m~3、501.13×10~8m~3、111.54×10~8m~3。(3)在季节上,为保障季节性河流河道内全年均满足生态流量,1、2、3、4、11、12月份应满足的生态需水量为1647.28m~3/s,5—10月份应满足的生态需水量分别为873.87m~3/s、2499.59m~3/s、5812.76m~3/s、4346.89m~3/s、3901.18m~3/s、1721.70m~3/s。(4)从综合角度考虑,水文变异下长江荆南三口季节性河流河道内年生态需水量为752.71×10~8m~3,年输沙需水量为910.01×10~8m~3,年水质净化需水量为425.70×10~8m~3。  相似文献   

11.
黄河下游影响带地下水资源评价及合理开发利用   总被引:9,自引:0,他引:9  
论文研究黄河下游影响带(河南段)地下水资源评价及合理开发利用问题。在概要介绍河南省黄河影响带水文地质条件基础上,运用FEFLOW建立研究区三维地下水流模型,计算出地下水多年平均补给资源28.35×108m3/a和可开采资源量19.43×108m3/a。重点阐述新增9个水源地的开采条件,并通过地下水模型预测新增133×104m3/d开采量条件下,浅层地下水位最大降深小于20m,开采5~10年后地下水趋于稳定,新增开采量的62.58%来自黄河水的补给。研究表明,黄河对研究区地下水具有重要的补给作用,新增地下水开采量是有保证的。同时阐述了研究区地下水可持续开发利用的对策。  相似文献   

12.
为了解中国农作物秸秆资源量近40年的变化趋势及当前的空间分布特征和主要利用方式,估算秸秆利用碳减排潜力,采用草谷比法对1981~2020年间全国农作物秸秆资源量进行了科学估算,分析了秸秆资源密度和人均资源量的时空分布特征,并估算了秸秆制备生物炭基肥的碳减排潜力.结果表明:(1) 1981~2020年我国农作物秸秆总量增长了4.39×108 t,且总体呈不断增长的趋势.(2) 2020年全国作物秸秆理论资源总量约7.72×108 t;水稻、小麦和玉米秸秆仍旧是主要的农作物秸秆种类,约占秸秆资源总量的84%.东北和华北地区秸秆资源量最丰富,东北地区人均资源占有量最高,约1.46 t;华北地区秸秆资源密度最高,达5.42 t·hm-2.(3)我国农作物秸秆综合利用率逐年提高,目前主要以肥料化和饲料化利用方式为主,约占所有秸秆利用方式的77.5%.(4) 2020年我国可收集农作物秸秆资源可制备成生物炭2.04×108 t,制备生物炭过程中可更新能源代替化石燃料可减少二氧化碳当量(CO2e  相似文献   

13.
利用瓦里关全球本底站和番禺气象局地面观测的CO2浓度资料对SCIAMACHY反演得到的对流层CO2产品进行验证.结果显示:SCIAMACHY产品能较好地反映对流层CO2的分布状况,在珠三角地区反演和观测的残差为1.29×10-6,相关系数为0.69,可用于分析区域对流层CO2的时空分布特征.利用2003~2009年SCIAMACHY观测资料分析研究显示:广东地区对流层CO2柱浓度最高值出现在春季,最低值出现在夏季,浓度年均值和年增长率分别为384.84′10-6和1.53′10-6/a,大于全球和我国同期的观测结果;粤东、粤西、粤北和珠三角地区的浓度均在春、冬季显著高于夏季、秋季 ,相同季节内各区域之间的差异不显著;粤西地区CO2柱浓度的年增长率最高,为1.82′10-6/a,珠三角和粤东地区的年增长率相当,分别为1.65,1.64′10-6/a,粤北地区的年增长率最低,为1.61′10-6/a.  相似文献   

14.
为了探明贵州省湿地净初级生产力(NPP)在2000-2010年的变化状况,以2000年、2005年和2010年湿地NPP数据为基础,运用ArcGIS和统计学的方法进行综合分析。结果表明:(1)11 a间贵州省湿地面积增加了134.1 km~2,人工湿地面积增加幅度明显;(2)湿地年均NPP值缓慢下降,2002年年均NPP值最大(764 g/(m~2·a)),2010年年均NPP值最小(647 g/(m~2·a));(3)湿地NPP空间分布规律呈自东向西南逐渐递减的趋势,低生产力湿地植被主要出现在湖泊湿地,且面积不断增加;(4)综合分析各市湿地NPP值得出,黔东南州NPP值最高(835 g/(m~2·a)),毕节地区(526 g/(m~2·a))和贵阳市(587 g/(m~2·a))较低;(5)2000-2010年间NPP变异面积呈增加趋势,NPP年均变异系数也逐年上升,说明湿地生态系统近10年间变化范围逐渐扩大。  相似文献   

15.
重庆缙云山降水中不同形态汞的含量及其沉降量   总被引:3,自引:3,他引:0  
于2013年4月至2014年3月连续1 a,利用湿沉降自动采样器采集了重庆缙云山的雨水样品,分析了样品中不同形态汞的含量,并计算其沉降量.结果表明,降水中总汞(THg)、溶解态汞(DHg)、颗粒态汞(PHg)、活性汞(RHg)、总甲基汞(Me Hg)、溶解态甲基汞(DMe Hg)、颗粒态甲基汞(PMe Hg)的含量范围分别为7.47~120.11、2.51~43.03、2.28~77.99、0.14~15.14、2.58×10-2~101.62×10-2、0.30×10-2~72.29×10-2、1.45×10-2~63.55×10-2ng·L-1.在计算各形态汞体积加权平均含量(VWM)的基础上,分别算出其年沉降通量为:42.71、23.51、19.20、5.87、0.61、0.34、0.27μg·(m2·a)-1.Me Hg占THg的比例是0.07%~3.79%(平均1.34%),而PHg占THg的比例以及PMe Hg占Me Hg的比例分别是10.49%~89.30%(平均49.95%)、4.31%~98.86%(平均43.14%).除Me Hg外,其它形态汞的含量和沉降量都表现出了明显的季节变化特征,THg、DHg、PHg的含量均为冬季最高而夏季最低,RHg的含量在春冬季明显高于秋夏季.THg、DHg、Me Hg、DMe Hg的沉降量与降雨量具有相同的季节变化趋势,均为春季夏季秋季冬季,RHg的沉降量也是春季最大,而冬季最小.缙云山大气汞沉降不仅受到降雨量、降雨频率以及其它气象条件的影响,也受到了人为活动的干扰.  相似文献   

16.
太原市大气颗粒物粒径和水溶性离子分布特征   总被引:9,自引:8,他引:1  
在太原市于2014年7月至2015年4月利用TE-235分级采样器采集PM_(10)分级颗粒物样品,通过离子色谱分析其中9种无机水溶性离子,报道了大气颗粒物(PM_(10))及其水溶性无机离子水平,探讨了其粒径分布、季节变化特征和来源.结果表明,采样期间太原市PM_(10)日平均浓度水平为173.7μg·m~(-3),超过了国家环境空气二级日标准限值(150μg·m~(-3),GB3095-2012);冬季PM_(10)浓度(199.1μg·m~(-3))和春季(194.2μg·m~(-3))较接近,远高于夏季水平(127.7μg·m~(-3)).PM_(10)在0.95μm和3.0~7.2μm粒径段处呈双峰分布.PM_(10)中总离子浓度季节变化为冬季夏季春季,其中SO~(2-)_4、NO~-_3和NH~+_4是主要离子,占总离子的质量分数为66%~80%.分级离子中,SO~(2-)_4、K~+、NH~+_4、Cl~-以及冬、春季的NO~-_3在0.95μm段呈单峰分布;Ca~(2+)、Mg~(2+)和夏季NO~-_3均在0.95μm和3.0~7.2μm段呈双峰分布.相关性分析显示,风速增大对冬夏季的颗粒物及其水溶性离子有稀释作用,但春季沙尘天气则会导致其升高.通过NO~-_3/SO~(2-)_4和Mg~(2+)/Ca~(2+)比值发现,太原市颗粒物中NO~-_3和SO~(2-)_4主要来自于燃煤排放,Mg~(2+)和Ca~(2+)来源为扬尘和煤燃烧排放.  相似文献   

17.
我国西南地区峡谷型梯级水库沉积物的碳汇效应对全球碳循环有着重要意义。为了探明该区域水库的碳汇强度,本研究选择乌江流域的乌江渡水库作为研究对象,于2015年5月对水库沉积物进行采样,并利用210Pbex核素计年技术,结合沉积物碳氮分析,估算乌江渡水库的碳埋藏量。结果表明:乌江渡水库沉积物平均沉积速率为0.155g/(cm~2·a),TOC沉降通量为70.85g/(m~2·a),堆积通量为29.14g/(m~2·a);TN沉降通量为8.22g/(m~2·a),堆积通量为2.79g/(m~2·a)。乌江渡水库沉积物年均TOC总埋藏通量为1.39×10~9g/a,其中82%来自水库内部光合作用形成的有机质。因此,依据保守的估算,乌江渡水库沉积物的净碳汇通量为23.9g/(m~2·a),保存的净碳汇量为1.1×10~9g/a。研究结果表明水库沉积物是一个重要的碳汇。  相似文献   

18.
为明确洞庭湖水华发生规律、水体面积的变化规律及其影响因子,利用MODIS传感器提供的MOD02HKM数据,采用多波段水体指数(MBWI)模型、浮游藻类指数(FAI)方法识别、提取洞庭湖水体、水华范围,并对2001~2015年洞庭湖水体、水华时空分布数据进行分析.结果表明:洞庭湖的水面范围在年内呈现明显的季节变化,在年际成缩减趋势.水域面积由大到小依次是夏季、秋季、春季、冬季,且2001~2015年丰水期水体的平均面积是枯水期的2.2倍;2001~2015年洞庭湖水域面积萎缩速率为-14.574km2/a,其中夏季的萎缩速率最大,达到-38.678km2/a;2001~2015年期间,洞庭湖区域均发生水华,水华主要集中发生在东洞庭湖的西部湖湾区,西洞庭湖和南洞庭湖的水华则沿河岸零星分布;洞庭湖水华存在明显的季节变化和年季变化.每年水华面积基本呈现正态分布,最小值出现在冬季,最大值出现在夏季和秋季,其值达到681.43km2;2001~2015年水华爆发面积最高占全湖面积的18.2%,水华面积年平均变化率为-8.657km2/a,水华爆发面积呈现缩小的趋势.  相似文献   

19.
本研究采用便携式温室气体分析仪连接通量箱在线监测杭州西溪湿地CH_4、CO_2通量日变化及季节变化,同时也对包括有机碳含量、湿度、孔隙度、比重、p H、Eh在内的潜在影响因子进行了研究。结果表明,通常情况下,CH_4、CO_2通量的变化分别为-0.001 9~0.035 3mg/(m~2·h)和-109.76~442.55mg/(m~2·h);CH_4、CO_2通量的变化存在明显正相关关系。CH_4通量的季节变化表现为夏季秋季春季冬季;CO_2通量的季节变化表现为夏季春季冬季秋季。土壤湿度是影响CH_4通量变化的重要因子,通常湿度越大,CH_4通量越大;在生长季维管植物有助于CH_4的氧化;西溪湿地土质差异也使CH_4、CO_2通量排放有所差异,具体表现在土壤有机碳含量相差较大,而土壤中有机碳的含量与CH_4产生潜力呈显著正相关。  相似文献   

20.
一、地源热泵系统简介[1][2] 地源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统.它是利用水源热泵的一种形式,即利用水与地能(地下水、土壤或地表水)进行冷热交换来作为水源热泵的冷热源,冬季把地能中的热量"取"出来,供给室内采暖,此时地能为"热源";夏季把室内热量取出来,释放到地下水、土壤或地表水中,此时地能为"冷源".地源热泵机组的能量流动是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+吸收的热能)一起排输至高温热源.而其所耗能量的作用是使制冷剂(如R22)压缩至高温高压状态,从而达到吸收低温热源中热能的作用.通常地源热泵消耗1kW 的能量,用户可以得到5kW 以上的热量或4kW 以上冷量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号