首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 952 毫秒
1.
工业VOCs气体处理技术应用状况调查分析   总被引:16,自引:0,他引:16       下载免费PDF全文
在调研大量工业VOCs气体处理工程案例的基础上,分析了不同工业VOCs气体处理技术的应用状况,包括不同处理技术在国内外的市场占有率、处理气体流量、VOCs浓度、VOCs种类以及所应用的行业等.结果表明,催化氧化、吸附、生物法是应用较多的VOCs处理技术.冷凝、膜分离和吸附工艺多用于处理浓度大于10000mg/m3的VOCs气体,并可回收VOCs;催化燃烧、热力燃烧工艺多用于处理浓度2000~10000 mg/m3且不具回收价值的VOCs气体;生物处理、等离子体多用于处理浓度低于2000mg/m3的VOCs气体.在进行VOCs处理技术选择时,应综合考虑VOCs气体特性(VOCs浓度、流量、温湿度、颗粒物含量)、VOCs处理技术的技术经济性能、排放标准等因素.  相似文献   

2.
采用便携式非甲烷总烃测试仪对济南市重点VOCs排放企业的有组织排放口开展监测,分析了不同行业、不同工艺非甲烷总烃(NMHC)排放特征,介绍了VOCs废气处理技术现状。结果表明:有组织废气NMHC排放浓度≤12 800 mg/m~3,超标率为11.9%;炼焦工艺排放的NMHC浓度最大,达到了868.25 mg/m~3;重点VOCs排放企业废气治理采用活性炭吸附、UV光氧催化的比例较高,66.4%的企业采用组合治理模式,活性炭+UV光氧和吸附脱附+燃烧组合工艺的应用比例达到52.7%。  相似文献   

3.
应用沥青凝聚装置和静电回收净化技术,处理铝厂排出的含有氟,氟化和物,沥青的烟气及粉尘,即能净化有害烟气又能回收有价值的工业原料,处理后的各项指标为:粉尘排放浓度≤150mg/m^3,沥青烟的排放浓度≤80mg/m^3,氟化物的排放浓度≤11mg/m^3.  相似文献   

4.
《环境科学与技术》2021,44(1):134-140
蓄热燃烧法是一种技术成熟、应用广泛、无二次污染的VOCs控制技术,其适用于处理大风量、低浓度的VOCs废气。该文综述了蓄热燃烧法处理工业废气中VOCs的研究进展,从工业应用的角度,分析了蓄热燃烧法优缺点和应用现状,阐述了流场数值模拟在蓄热燃烧法中的应用,表明蓄热热力燃烧法处理效率高、能耗低、运行稳定,蓄热催化燃烧法可处理简单组分VOCs废气,流场数值模拟能有效地优化蓄热焚烧炉结构,提高其处理性能。  相似文献   

5.
在实验室模拟青海和西藏2种牛粪在民用炉具中的燃烧过程,采用稀释通道系统与质子转移飞行时间质谱(PTR-TOF-MS)在线分析牛粪燃烧排放的挥发性有机物(VOCs),通过电子秤实时记录燃料质量的动态变化,获得牛粪燃烧排放VOCs浓度的时间序列与实时排放因子.结果表明,70g牛粪一次燃烧过程持续1100~1500s.牛粪燃烧排放VOCs浓度的时间变化趋势总体上呈单峰分布;西藏牛粪在燃烧450s左右VOCs浓度达到峰值7.92×10-6;青海牛粪在燃烧400s左右VOCs浓度达到峰值6.01×10-6.牛粪燃烧VOCs实时排放因子变化范围为40.74~156.88mg/g,趋势不同于VOCs浓度变化,随燃烧过程进行排放因子呈上升趋势.牛粪燃烧至3~4min左右,VOCs排放因子最低.甲醇、甲醛和乙醛3种VOCs排放因子占比最大,其中西藏牛粪燃烧3种VOCs排放占比分别为24.0%±1.9%、11.9%±1.8%和27.4%±1.4%,青海牛粪为22.0%±1.1%、13.3%±2.9%和17.7%±4.6%.本研究首次给出了牛粪燃烧VOCs实时排放因子,可为高时间分辨率排放清单建立和青藏高原地区室内空气污染的健康效应研究提供基础数据.  相似文献   

6.
采用低氮燃烧+选择性非催化还原烟气脱硝技术对循环流化床锅炉烟气进行脱硝处理.烟气NOx初始浓度为280 mg/Nm3时,排放浓度低于100 mg/Nm3,去除率达65%以上.达到国家《火电厂大气污染物排放标准(GB13223-2011)》限值要求.工艺稳定运行后年处理费用为202.40万元.  相似文献   

7.
有机废物在生物转化过程中会产生大量的VOCs,不仅污染环境、危害人体健康,也成为目前废弃物处理处置工程顺利运行的瓶颈。通过文献综述的形式总结了有机废物在生物转化过程中VOCs的产生机理、监测技术、排放状况、影响因素及控制等方面的研究现状,为有机废物处理过程中VOCs的排放控制提供参考。结果表明:在有机物生物转化过程中,填埋和堆肥中产生的VOCs在100种以上,填埋和堆肥中产生的VOCs浓度分别为67~7 896,411~14 547 mg/m3,VOCs浓度分布较广,去除效率有待提高。厌氧发酵产生的最高VOCs浓度一般低于30 mg/m3,且厌氧发酵产生的VOCs易于收集,并通过可催化和热力焚烧有效去除VOCs。因此,应将有机废物填埋和堆肥过程产生的VOCs作为重点研究方向。  相似文献   

8.
为强化VOCs治理及废气处理效果,分析了VOCs治理及废气处理中广泛应用的热力氧化技术:直接燃烧(TO)、催化燃烧(CO)、蓄热式燃烧(RTO)及其变种蓄热式催化燃烧(RCO)技术的发展和演化历史,对比了不同技术各种工况条件下的优缺点.应根据需要,合理选择热力氧化技术,以提高VOCs治理及废气处理效率.  相似文献   

9.
王凡  刘宇  卢长柱  田刚  张凡  岳涛 《环境工程》2014,32(1):140-143
通过对2 t/h层燃锅炉燃烧条件的分析,提出低氮燃烧技术改造方案,并进行燃料分级燃烧、空气分级燃烧和烟气循环对NOx排放控制影响的研究。研究结果表明:采用分室配风实现空气分级燃烧和燃料分级燃烧,NOx排放量由260~359 mg/m3降为137~182 mg/m3;循环烟气率达10%~15%时,烟气循环可实现降低NOx排放3%~5%;相同燃烧状况下,低氮燃烧技术优化后NOx的排放浓度由低氮燃烧改造前的301~430 mg/m3降低到137~182 mg/m3。层燃锅炉低氮燃烧改造后烟气中NOx浓度低于200 mg/m3,可作为有效的NOx控制技术。  相似文献   

10.
基于熵权和层次分析法的VOCs处理技术综合评价   总被引:1,自引:0,他引:1  
针对化工行业所使用的VOCs控制技术,综合考虑了环境、经济、管理以及技术4个一级因素以及13个二级因素对化工企业中常用的VOCs控制技术进行综合评价,建立基于熵权法与层次分析法相结合的模糊综合评价模型,对9种VOCs末端治理技术进行量化分析评价.阐述了备选VOCs的排放控制技术筛选方法、指标体系的构建以及评价方法,最后以山东省青岛市化工企业为例,给出了模型的求解过程和评价结果.结果显示,催化燃烧技术在环境和经济方面优势明显,热力焚烧技术在经济方面优势显著,吸附技术在技术方面优势突出.综合考虑环境、经济、管理和技术四个方面,VOCs排放控制技术综合评价结果为:催化燃烧>热力焚烧>光催化≈吸附浓缩-燃烧>等离子体>膜分离>吸附>冷凝>生物降解>吸收.  相似文献   

11.
以整体式蜂窝状分子筛为载体,制备铜锰铈负载型催化剂,研究其微波辐照下对VOCs (甲苯、丙酮、乙酸乙酯)的催化活性及其稳定性,探究影响催化剂活性的因素,并通过测试床层温度分布进行分析.研究表明,微波功率1.3kW、催化剂体积300mm×300mm×300mm,固定床温度>300℃条件下,催化剂对初始浓度200~2000mg/m3的5m3/h VOCs气体的降解效率为80%~92%.温度是VOCs氧化降解的条件,但当床层温度超过了300℃(VOCs完全燃烧温度)之后,升温对VOCs降解效率的影响不再明显.表征可知,尖晶石态铜锰铈单金属氧化物及其复合氧化物是主要的催化活性组分.VOCs在催化剂表面进行准一级反应而被催化氧化;高温对催化剂结构有一定影响,但重复性试验证实了催化剂的高活性和良好的稳定性.  相似文献   

12.
以整体式蜂窝状分子筛为载体,制备铜锰铈负载型催化剂,研究其微波辐照下对VOCs (甲苯、丙酮、乙酸乙酯)的催化活性及其稳定性,探究影响催化剂活性的因素,并通过测试床层温度分布进行分析.研究表明,微波功率1.3kW、催化剂体积300mm×300mm×300mm,固定床温度>300℃条件下,催化剂对初始浓度200~2000mg/m3的5m3/h VOCs气体的降解效率为80%~92%.温度是VOCs氧化降解的条件,但当床层温度超过了300℃(VOCs完全燃烧温度)之后,升温对VOCs降解效率的影响不再明显.表征可知,尖晶石态铜锰铈单金属氧化物及其复合氧化物是主要的催化活性组分.VOCs在催化剂表面进行准一级反应而被催化氧化;高温对催化剂结构有一定影响,但重复性试验证实了催化剂的高活性和良好的稳定性.  相似文献   

13.
建立了热脱附/毛细管气相色谱/质谱联用测定车内空气中苯、甲苯、乙酸丁酯、乙苯、对/间二甲苯、苯乙烯、邻二甲苯、十一烷和对二氯苯等挥发性有机物采样、分析方法。十种挥发性有机物在一定浓度范围内工作曲线线性良好,相关系数均在0.9970~0.9998之间。检出限在0.2~1.2μg/m^3。用该法检测了某汽车企业生产的轿车内的空气,取得满意结果,表明本方法具有一定的实用性、推广性。  相似文献   

14.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

15.
以某船舶涂装车间运行数据为依据,建立了蓄热式高温氧化炉(Regenerative Thermal Oxidizer,RTO)的热力平衡关系式,核算了RTO空载和满载运行的数据,验证了炉温与挥发性有机化合物(Volatile Organic Compounds,VOCs)浓度的关系;讨论了排风量、沸石转轮浓缩倍率、换热器热利用率和VOCs浓度四个关键参数对天然气消耗量的影响.结果显示,入炉VOCs浓度每增加1000mg/Nm3,炉温上升约21℃,排风量越小,沸石转轮浓缩倍率、换热器热利用率和VOCs浓度越大,天然气消耗量越低.基于本研究建立的热平衡方程,结合RTO实际工程应用中的注意事项,结果表明,在烘干阶段按照工艺要求的3次/h确定车间最小排风量,将沸石转轮浓缩倍率设定为10~14倍,选用换热器热利用率在0.7以上的换热器能在保证RTO安全运行的前提下显著降低天然气消耗量.  相似文献   

16.
分析长治市夏季环境VOCs浓度及其反应活性(以OH·消耗速率计),基于聚类分析与正定矩阵因子分解法 (PMF)解析VOCs来源.结果表明:长治市总VOCs平均浓度为37.40 μg/m3,平均活性水平为5.07s-1,具有本地新鲜排放和反应后混合的特征.机动车排放、燃煤、液化石油气/天然气(LPG/ NG)使用、工艺过程和溶剂使用源对环境VOCs的贡献分别为29.7%、29.2%、23.5%、11.6%和6.1%;对具有新鲜排放特征VOCs的贡献分别为34.6%、38.4%、10.1%、8.5%和8.5%.长治市VOCs主要受本地机动车与燃煤源排放的影响,而LPG/ NG使用源与工艺过程源可通过区域传输影响本地环境VOCs.可见,有效控制本地机动车与燃煤源排放、加强市区周边LPG/NG使用与工艺过程源的联防联控,是降低长治市环境VOCs浓度与O3生成的有效途径.  相似文献   

17.
VOCs(volatile organic compounds,挥发性有机物)作为臭氧和二次有机气溶胶的关键前体物,已成为工业行业重点控制的大气污染物.源头控制作为工业源VOCs污染防治的重要手段,近5年来得到了快速发展.选取家具制造业、汽车制造业和包装印刷业作为代表性溶剂使用行业,逐生产工序检测、分析溶剂使用企业在使用传统溶剂型溶剂和新型水性溶剂时的VOCs排放特征,定量研究新型低/无VOCs溶剂替代所带来的VOCs污染特征的变化规律,分析并提出溶剂使用源VOCs污染控制对策.结果表明:不同生产工序所排放VOCs的浓度及其各物种贡献率均存在差异,使用新型水性溶剂时,酯类和烷烃为首要VOCs物种,ρ(VOCs)集中在8.77~40.21 mg/m3之间;使用传统溶剂型溶剂时,苯系物和酯类为首要VOCs物种,ρ(VOCs)分布在27.08~2 418.47 mg/m3之间,ρ(VOCs)为使用新型水性溶剂的2.78~50.00倍(以平均质量浓度计),醇类、苯系物、烯烃、酮类、酯类和烷烃的质量浓度分别为使用新型水性溶剂的75.47、19.43、18.27、5.74、5.35和1.20倍.研究显示,源头控制通常需升级配套的生产工艺及设备,但相较于末端控制和过程控制更易管控;水性溶剂替代作为现阶段溶剂使用行业源头控制的主要手段,可有效降低各排污节点的VOCs排放浓度,实现VOCs减排;同时,苯系物和烯烃排放浓度及其排放总量的削减,可降低排放废气的反应活性,从而减少溶剂使用行业二次污染物的生成量.   相似文献   

18.
为分析自热临界温度和采空区漏风风速对煤自燃的影响,在常温(30℃)、中温(60℃)、不同通气量等条件下对滕东煤矿3下煤层煤样进行了煤炭自燃氧化规律实验。结果表明:煤样在60℃氧化所放出的CO量较30℃时高3.4~4.1倍,煤炭氧化速率上升梯度约1.35 ppm/℃;在恒温变通气量条件下,CO气体浓度呈现先减小后稳定的趋势,CO的释放量随通气量的增大而减小;在通气量为50 mL/min(采空区漏风为0.1 m/min)的条件下,煤氧化释放的CO量最大且煤氧化能力最强,应加强最易发生自燃漏风区域的密封防护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号