首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
针对暴雨时市政污水的特点,通过混凝试验考察了混凝剂投加量、重辅介质投加量、投加顺序、搅拌条件和静沉时间等因素对重辅强化混凝效果的影响。试验结果表明:重辅强化混凝后污染物去除效果优于常规混凝工艺;在最优条件下,即PAC35mg/L,重辅介质300mg/L,PAM0.8mg/L,混合快搅强度300r/min(55s),絮凝慢搅强度70r/min(7min)时,SS、COD和TP的去除率分别达到73.3、34.7和67.9%。该法可强化混凝效果,减少混凝剂投加量,缩短水力停留时间,为拓宽暴雨时市政污水的应急处理技术领域提供了参考。  相似文献   

2.
试验采用化学混凝法对蕉藕淀粉加工产生的废水进行处理,研究了硫酸铝,氯化铁,聚合硫酸铁(PSF),聚合氯化铝(PAC),聚丙烯酰胺(PAM)等不同混凝剂种类和投加量对COD、SS和TP去除效果的影响。试验结果表明,聚合氯化铝处理效果最佳,在废水COD、SS和TP的浓度分别为8340mg/L、7060mg/L和320mg/L时聚合氯化铝以500mg/L的用量得到COD、SS和TP的去除率分别为97.1%、98.0%和70%,出水的COD为241mg/L,SS为142mg/L,TP为112mg/L。  相似文献   

3.
严子春  陶仁乾 《中国环境科学》2018,38(11):4114-4119
通过单因素及正交试验,以聚二甲基二烯丙基氯化铵(HCA)为混凝剂对模拟农村生活污水进行强化混凝预处理,考察了影响HCA混凝去除SS、TP及有机物的主要因素及其主次顺序,并以Zeta电位及分形维数对HCA的混凝机理进行了分析.结果表明,影响HCA处理效果的因素顺序为初始pH值值 > HCA投加量 > 絮凝搅拌时间 > 混合搅拌速度梯度 > 混合搅拌时间 > 絮凝搅拌速度梯度,在优化条件下HCA混凝对SS、TP及COD去除率最高分别达94.1%、74.9%及61.1%;当HCA投加量为15mg/L时,Zeta电位与絮体分形维数分别为-2.03mv及1.0149.试验表明HCA对生活污水具有较好的处理效果,强化混凝去除污染物的机理主要是电性中和作用.  相似文献   

4.
纳米Fe_3O_4强化混凝-Fenton氧化预处理垃圾渗滤液   总被引:1,自引:1,他引:0       下载免费PDF全文
采用纳米Fe_3O_4与Fe Cl3制备复合混凝剂,利用混凝沉淀-Fenton氧化工艺预处理垃圾渗滤液原水,研究其处理效果。结果表明:在纳米Fe_3O_4投加量为2 g/L,Fe Cl3投加量为1.4 g/L时制备的复合混凝剂,在p H值为6.5,转速为300 r/min下快速搅拌1 min,转速为100 r/min下慢速搅拌30 min,沉淀时间为30 min的条件下,COD去除率为56.8%,ρ(COD)可由5 240 mg/L降低到2 264 mg/L;利用Fenton氧化处理混凝处理出水,在H_2O_2的投加量为5.5 g/L,n(H_2O_2)∶n(Fe2+)=4,p H值为6,反应时间为80 min,反应温度为25℃的最佳条件下,COD和氨氮的去除率分别为55.7%和40.1%,最终出水ρ(COD)和ρ(氨氮)分别为1 003 mg/L和670 mg/L;该组合工艺对垃圾渗滤液有较好的处理效果,COD、色度和氨氮的去除率分别为80.8%、59.5%和76.2%。  相似文献   

5.
根据昆明市第三污水处理厂深度处理Actiflo-D型滤池工艺的运行数据,评价了工艺出水水质及总磷(TP)去除效果,同时分析了混凝剂投加量及药剂费用。结果表明:该Actiflo-D型滤池工艺出水ρ(TP)平均为0.26 mg/L,最优水平值为0.09 mg/L,95%保证值为0.53 mg/L,TP平均去除率为49.3%;出水悬浮固体(SS)浓度95%保证值为9 mg/L。混凝剂聚合氯化铝(PAC)的投加量为2~9 mg/L,去除单位TP的PAC投加量平均值为55.8 mg/mg,投加比β为1~10 mol/mol;投加比β>4时,出水ρ(TP)≤0.5 mg/L。吨水PAC成本平均值为0.049元/t。  相似文献   

6.
针对电厂循环冷却排污水有机物含量低、氮磷含量高的水质特点,采用同步生物氧化(SBOT)、澄清、砂滤、臭氧氧化及活性炭过滤相结合的处理工艺进行生产性试验。结果表明:SBOT水力停留时间4.5 h、好氧区溶解氧3.0 mg/L、C/N为2左右,澄清池上升流速1.93 m~3/(m~2·h)、聚合硫酸铝铁投加量35 mg/L、聚丙烯酰胺投加量为0.2 mg/L,滤池滤速8.2 m/h,臭氧投加量55 mg/L、接触时间30 min,活性炭滤池滤速6.8 m/h,出水COD_(Cr)最大为12.9 mg/L、最小为7.6 mg/L、平均为10.8 mg/L,NH4+-N最大为0.86 mg/L、最小为0.12 mg/L、平均为0.47 mg/L,TN最大为8.8 mg/L、最小为6.2 mg/L、平均为7.7 mg/L,TP最大为0.21 mg/L、最小为0.08 mg/L、平均为0.15 mg/L,SS最大为2.4 mg/L、最小为0.5 mg/L、平均为1.7 mg/L,相应的平均去除率分别为64.4%、97.2%、75.7%、54.7%及91.9%,满足《城镇污水处理厂主要水污染物排放标准》(DB33/2169—2018)要求。  相似文献   

7.
生物-化学强化处理城市污水除磷试验   总被引:1,自引:0,他引:1       下载免费PDF全文
以PFS(聚合硫酸铁)和PAS(聚合硫酸铝)为混凝剂,分别在化学反应器和SBR(序批式活性污泥反应器)内,研究模拟城市污水的化学除磷和生物-化学强化除磷的效果. 结果表明:在化学反应器内,投加PFS和PAS均可提高TP的去除率,当投加量分别为0.20和1.00 mL/L时,出水ρ(TP)均在0.50 mg/L以下,TP去除率均超过90.0%. 在生物反应器内,投加PFS和PAS均可强化生物除磷效果,与化学除磷相比,PFS投加量需增至0.25 mL/L,TP去除率才可达到90.0%,单独投加PFS的除磷效果好于PFS强化生物除磷效果;而PAS投加量降至0.50 mL/L,出水ρ(TP)即低于0.50 mg/L,TP去除率可达到90.0%以上,PAS强化生物除磷效果好于单独投加PAS的除磷效果. 在生物反应器内投加PAS,TN去除率可提高12.5%;而投加PFS后TN去除率则下降3.3%. 在生物反应器内投加PFS和PAS,能将CODCr去除率从82.6%提至90.0%以上. 采用PCR-DGGE技术分析微生物群落特征发现,投加混凝剂的反应器内生物群落数量有所减少,但同时产生一些新生物种群,强化了功能种群的处理效果.   相似文献   

8.
通过烧杯搅拌试验,以聚合氯化铝(PAC)和FeC13为混凝剂对华东交通大学排放口生活污水进行混凝处理研究,考察在不同混凝条件、混凝剂投加量、pH下浊度、COD、TP的去除率.研究表明:在最佳混凝条件下PAC投加量为105mg/L时浊度、COD、TP的去除率分别为96.2%、67.4%、94.8%;FeCl3最佳投加量为...  相似文献   

9.
采用水泥混凝处理重庆山区某隧道施工废水。结果表明,随着水泥投加量的增加,出水pH显著升高,电导率则先减后增;水泥投加量1 g/L,沉降时间30min时,SS平均去除率93.92%,出水浓度68mg/L;最佳沉降时间控制在30~60min;SS去除率随着初始浓度提高而逐渐上升;废水总COD、TP主要由SS贡献,水泥去除效...  相似文献   

10.
针对天津某人工湿地工艺研发了由溶气气浮设备和生物滤池组成的人工湿地预处理工艺。对生物滤池开展了稳定运行、反冲洗研究,并对生物滤池中的微生物进行分析;对河道水体中SS、COD、TN、TP去除效果进行试验,得出结论:当PAC和PAM投加量分别为30,1.5 mg/L时,出水中的COD、SS、TN和TP水质指标均符合《城镇污水处理厂污染物排放》一级A标准。  相似文献   

11.
硼泥复合混凝剂处理采油井管洗涤废水的研究   总被引:2,自引:0,他引:2  
探讨了利用废渣生产的硼泥复合混凝剂处理采油井管洗涤废水,以及pH值,混凝剂的投加量,搅拌速度,搅拌时间,沉降时间和温度处理效果的影响,当废水的含油量在8500mg/L左右时,投药量为2000mg/L,最佳值范围为4.5-8.5,油COD和SS的去除率分别大于84%,825,98%,沉降时间为35min,搅拌速度,搅拌时间,温度对油,COD和SS的去除率无显著影响,若经双层滤料过滤法或生化法的二级处理,出水达到国家一级排放标准。  相似文献   

12.
利用具有强氧化性质的K2S2O8试剂作为研究对象,考察了对污泥重金属Pb、Zn、Cu、Cd的去除影响、脱水表现以及处理前后污泥性质的变化.结果表明:在起始pH值为2.0,反应时间1h,温度25℃,投加1.34g/g SS的K_2S_2O_8,可改善污泥的脱水性能.其中,滤饼含水率可由82.6%降至74.8%;污泥比阻由6.70×10~8S~2/g下降至5.43×108S2/g.K_2S_2O_8氧化处理污泥,可使污泥絮体快速分解,上清液COD从15.2mg/L增至187.0mg/L;TN从6.03mg/L增至22.7mg/L;TP则由8.15mg/L变为12.7mg/L;污泥TSS相应降低了9.4%.污泥重金属去除率随着投加量的增加而增加,当K2S2O8投加量达到2.01g/g SS时,污泥重金属Pb、Zn、Cu、Cd去除率可分别达到63.90%、87.10%、86.40%以及84.25%.当投加量大于2.01g/g SS,各重金属去除率趋于稳定.低pH值能够提高污泥中重金属的去除率.K2S2O8与污泥反应后,污泥重金属转移到上清液中,对上清液投加0.075%的Ca O,pH值提高,可以相应去除上清液中16.95%的Pb、54.70%的Zn、58.90%的Cu以及21.95%的Cd,TN和TP含量也明显降低.  相似文献   

13.
以钠基膨润土为原料,CTMAB、CPAM为改性剂制备复合改性膨润土。探讨了最佳制备条件为:CTMAB投加量2 mmol,CPAM投加量0.03 g,原土投加量6 g,搅拌速度200 r/min,改性时间大于1.5 h。FTIR和XRD对复合改性膨润土进行表征,表明CTMAB、CPAM进入膨润土层间,扩大了膨润土的层间距从而提高了吸附性能。在原水浓度191 600 mg/L,改性土投加量2 g,搅拌时间1~3 h,pH值6~8,搅拌速度200~300 r/min,离心速度1 400 r/min,离心时间2 min的工艺条件下,制药废水COD去除率可达70%。吸附动力学研究结果表明准二级动力学模型能很好地描述膨润土复合材料对制药废水的吸附过程。  相似文献   

14.
选取五种常用无机混凝剂,把活性污泥与生活污水按一定比例混合后,进行混凝试验,结果表明,三氯化铁去除TP的效果最好,在投加量为99 mg/l时,可去除污水中88%的TP。三种混凝剂FeCl3、PFS、PAFC与PAM复合进行参数优化的正交试验,对TP有最佳处理效果的絮凝条件为:投加FeCl3,投加量为99 mg/l,投加顺序为FeCl3先投加1 min,以污泥恰搅起不分层的速度搅拌(约160 r/min)30 min。试验结果对投加混凝剂活性污泥法选择合适的混凝剂有借鉴作用。  相似文献   

15.
通过单因素试验考察了聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚合氯化铝铁(PAFC)对餐厨废水生化处理出水中COD、TP的去除效果,并确定了絮凝沉淀最佳工艺条件:最优絮凝剂为PFS,最佳投加量为450 mg/L,絮凝反应时间为30 min,PAM投加量为0.6 mg/L,PAM投加时间为距离PFS投加后至少l min.在最佳工艺条件下,COD、TP平均去除率可分别达36%、83%,此时絮体体积比为13%.  相似文献   

16.
以包钢高炉煤气冷凝水处理系统为研究对象,通过静态混凝沉淀试验和吸附试验研究了复合混凝剂与高分子纳米吸附剂对煤气冷凝水处理效果的影响。复合混凝剂与高分子纳米吸附剂的最佳配比及最佳运行参数为:聚合硫酸铁投加量为25mg/L、聚丙烯酰胺投加量为0.15mg/L、pH值为8.5左右、温度为20℃、高分子纳米吸附剂投加量为2ml/L、振荡时间为60min、振荡频率为90r/min;经处理后,出水悬浮物(SS)的去除率为98%以上,浊度去除率为97%以上,Cl-的去除率为80%以上,SO2-4的去除率达30%以上,且出水清澈,达到了工业循环冷却水回用水质的标准。  相似文献   

17.
重金属Pb(Ⅱ)污染原水的应急处理工艺研究   总被引:6,自引:4,他引:2  
采用2种常用混凝剂--聚合硫酸铁(PFS)和聚氯化铝(PACl),以水中Pb(II)浓度突增为背景,研究了混凝剂投加量、目标物初始浓度以及调节pH值和高锰酸钾(KMnO4)预氧化等措施对混凝除Pb(II)效果的影响,同时比较了粉末活性炭(PAC)吸附 混凝和硅藻土吸附 混凝等工艺对Pb(Ⅱ)的去除效果.结果表明,单独投加混凝剂时,投加PFS对Ph(Ⅱ)的去除效果优于投加PACI.2种混凝剂的投加量为10 mg/L时,对Ph(Ⅱ)的去除效果基本达到最好水平,并且Pb(Ⅱ)初始浓度对混凝效果影响最小.在此投加量下调节pH值到9,2种混凝剂对应Pb(Ⅱ)的去除率都在95%以上.KMn04预氧化只在以PACI为混凝剂时对除Pb(Ⅱ)起到一定促进作用.以PFs为混凝剂时,投加10 mg/L的PAC或投加25 mg/L的硅藻土会取得相同的除Pb(Ⅱ)效果,即水中Pb(11)浓度从402 μg/L降至10 μg/L以下;而混凝剂为PACl时,活性炭投加量为20 mg/L或硅藻土投加量为50 mg/L时,水中剩余Ph(Ⅱ)的浓度也可以达标;通过硅藻土与KMnO4联用试验发现,高锰酸钾氧化会削弱硅藻土对Pb(Ⅱ)的吸附作用.综合考虑得出,硅藻土吸附 混凝才是原水应急除Pb(Ⅱ)简单、经济和有效的方法.  相似文献   

18.
针对王坡井田煤层气井采出水中污染物含量低,仅CODcr超出国家一级排放标准(GB 8978-1996)的特点,采用活性炭吸附处理,然后通过絮凝沉降迅速回收采出水中悬浮活性炭。结果表明:活性炭投加量为3g/L、吸附时间为40 min,PAM投加量为2 mg/L,沉降时间为5 min,活性炭回收率为98.35%,处理后采出水CODcr为45.45 mg/L、SS为7 mg/L,达到国家一级排放标准(GB 8978-1996)。  相似文献   

19.
对氢氧化镁混凝过程应用于活性黄X-R废水脱色进行了研究,考察了p H值、药剂投加量、搅拌速度和时间对活性染料废水色度去除率的影响,同时运用i PDA在线监测系统对混凝过程中染料废水的絮体形成进行监测,并进一步探求了不同搅拌条件对絮体生长特性和混凝过程的影响。结果表明:对于色度去除率,其最佳p H值为12.0,在p H为11.5和12.0时最佳药剂投加量分别为144,216 mg/L。搅拌过程中快速搅拌最佳速度为200 r/min,时间为40 s,慢速搅拌最佳速度为40 r/min,时间为10 min。搅拌条件对混凝过程至关重要,搅拌速度和时间增加都会对絮体形成及增长产生负面影响。根据Zeta电位的变化可知,混凝的主要机制是电荷中和及吸附。  相似文献   

20.
为考察活性炭吸附对乳化油的去除效果,分别采用煤质、木质和椰壳粉状活性炭进行对比试验研究。结果表明:矿井水原水油含量0.66 mg/L,采用煤质、木质及椰壳活性炭投加量60 mg/L、吸附30 min后,去除率分别为81.71%、63.13%和50.78%,煤质活性炭吸附效果优于木质和椰壳活性炭;试验得出的煤质活性炭弗伦德利希(Fruendlich)吸附等温式,吸附时间60 min,活性炭投加量46 mg/L时,出水含油量小于0.1 mg/L;活性炭投加量60 mg/L时,出水含油量小于0.05 mg/L,为实际工程应用提供设计工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号