首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A questionnaire survey was conducted with the aim of examining the problems involved in the disposal of infectious waste at home-visit nursing stations and in its handling during home visits by nurses. From among the home-visit nursing stations registered with the National Association for Home-Visit Nursing Care, 1,965 offices were selected at random and questionnaires were sent to the selected offices. Nurses at 1,314 offices (66.9?%) responded to the survey and responses from 1,283 offices were identified as suitable for analysis after excluding 26 offices that closed and five offices whose main field of care was psychiatry. Offices were classified by management configuration. Offices attached to hospitals were classified as “attached office” and all others were classified as “independent office”. More attached office nurses recovered medical waste from patients’ homes than did independent office nurses. They were also more likely to transport waste with them during the course of a day’s visits. There was a significant difference between attached and independent offices in the burden of expense for waste disposal. Both offices have strong concern about waste treatment containers and handling in improvement in home medical care (HMC) waste disposal. Thus, in order to alleviate these concerns, it is necessary to provide nurses with containers for medical waste suited to home-visit nursing care and tools for preventing injuries. Japanese government should address HMC waste disposal more comprehensively through necessary legislation, subsidization and standardization.  相似文献   

2.

Home medical care (HMC) is advancing not only in Japan but also throughout the world. In Japan, HMC waste is legally classified as municipal waste. Nevertheless, some municipalities do not collect some or all the HMC waste because of fear of infection. Therefore, this study was conducted to clarify the following two issues: First, have the municipalities made progress in collecting and appropriate disposal of HMC waste in the past 13 years? Second, is there a difference between a large city and a small city in terms of appropriate disposal progress? A total of 687 municipalities published the treatment of HMC waste. Currently, 42 municipalities collected all HMC waste. 236 municipalities were collecting HMC waste except for self-injection needle. 117 municipalities were collecting HMC waste except for self-injection needle and Syringe. The collection status of HMC waste was better in cities with high population than in cities with low population. HMC waste collection status was progressed over 13 years. However, more than 60% of the municipality staff stated that they could not avoid being anxious about infection caused by HMC waste. We suggest that providing HMC waste education to the municipalities wherein these efforts have not yet progressed is important.

  相似文献   

3.
In recent times, the quality of medical care has been continuously improving in medical institutions wherein patient-centred care has been emphasized. Failure mode and effects analysis (FMEA) has also been promoted as a method of basic risk management and as part of total quality management (TQM) for improving the quality of medical care and preventing mistakes. Therefore, a study was conducted using FMEA to evaluate the potential risk causes in the process of infectious medical waste disposal, devise standard procedures concerning the waste, and propose feasible plans for facilitating the detection of exceptional cases of infectious waste. The analysis revealed the following results regarding medical institutions: (a) FMEA can be used to identify the risk factors of infectious waste disposal. (b) During the infectious waste disposal process, six items were scored over 100 in the assessment of uncontrolled risks: erroneous discarding of infectious waste by patients and their families, erroneous discarding by nursing staff, erroneous discarding by medical staff, cleaning drivers pierced by sharp articles, cleaning staff pierced by sharp articles, and unmarked output units. Therefore, the study concluded that it was necessary to (1) provide education and training about waste classification to the medical staff, patients and their families, nursing staff, and cleaning staff; (2) clarify the signs of caution; and (3) evaluate the failure mode and strengthen the effects.  相似文献   

4.
The current situation of solid waste management in China   总被引:1,自引:1,他引:1  
With economic development, the quantity of solid waste is increasing rapidly in China; the total quantities of municipal solid waste (MSW), industrial solid waste (ISW), and hazardous waste (HW) in 2002 were 136.5 million tons, 945 million tons, and 10 million tons, respectively. In 2002, the quantity of MSW disposed of was 74.04 million tons, 89.30% of which was landfilled, 3.72% was incinerated, and 6.98% was composted. There are currently 651 disposal facilities for MSW in China. Mining gangue is the largest component of ISW, making up 27.5% of the total. In the Chinese industrial sector, the coal mining and processing industry contributed most to the total quantity of ISW, with 16.0% of the total quantity of ISW generated by this sector. In total, 44% of HW was recycled, 27% was stored, 13.5% was disposed of, and 15.4% was discharged. Of the total HW generated, 40% was produced by the chemical materials and chemical products industry. Five categories of HW, i.e., waste alkali, waste acid, inorganic fluoride waste, copper waste, and inorganic cyanide waste, made up 57.8% of the total HW generated. Solid waste pollution has become a huge challenge faced by those involved in Chinese environmental management, but this can be seen as an opportunity to improve environmental quality. This article introduces the strategies taken to improve solid waste management in China.  相似文献   

5.
The study was conducted in Andhra Pradesh, Maharashtra and Uttar Pradesh in India. Hospitals/nursing homes and private medical practitioners in urban as well as rural areas and those from the private as well as the government sector were covered. Information on (a) awareness of bio-medical waste management rules, (b) training undertaken and (c) practices with respect to segregation, use of colour coding, sharps management, access to common waste management facilities and disposal was collected. Awareness of Bio-medical Waste Management Rules was better among hospital staff in comparison with private medical practitioners and awareness was marginally higher among those in urban areas in comparison with those in rural areas. Training gained momentum only after the dead-line for compliance was over. Segregation and use of colour codes revealed gaps, which need correction. About 70% of the healthcare facilities used a needle cutter/destroyer for sharps management. Access to Common Waste Management facilities was low at about 35%. Dumping biomedical waste on the roads outside the hospital is still prevalent and access to Common Waste facilities is still limited. Surveillance, monitoring and penal machinery was found to be deficient and these require strengthening to improve compliance with the Bio-medical Waste Management Rules and to safeguard the health of employees, patients and communities.  相似文献   

6.
The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective unit production rates were: (1) for reagents 1.7 (2.4) g/patient/d and 0.3 (0.4) g/examination/d, (2) for solvents 248 (127) g/patient/d and 192 (101) g/examination/d, (3) for dyes and tracers 4.7 (1.4) g/patient/d and 2.5 (0.9) g/examination/d and (4) for solid waste 54 (28) g/patient/d and 42 (22) g/examination/d.  相似文献   

7.
Whilst the education of young people is often seen as a part of the solution to current environmental problems seeking urgent attention, it is often forgotten that their parents and other household members can also be educated/influenced via home-based educational activities. This paper explores the theory of intergenerational influence in relation to school based waste education. Waste Watch, a UK-based environmental charity (www.wastewatch.org.uk), has pioneered a model that uses practical activities and whole school involvement to promote school based action on waste. This methodology has been adopted nationally. This paper outlines and evaluates how effective school based waste education is in promoting action at a household level. The paper outlines Waste Watch's 'Taking Home Action on Waste (THAW)' project carried out for two and half years in Rotherham, a town in South Yorkshire, England. The project worked with 6705 primary age children in 39 schools (44% of primary schools in the project area) to enable them to take the "reduce, reuse and recycle message" home to their families and to engage these (i.e. families) in sustainable waste management practices. As well as substantial increases in students' knowledge and understanding of waste reduction, measurement of the impact of the project in areas around 12 carefully chosen sample schools showed evidence of increased participation in recycling and recycling tonnages as well as declining levels of residual waste. Following delivery of the project in these areas, an average increase of 8.6% was recorded in recycling set out rates which led to a 4.3% increase in paper recycling tonnages and an 8.7% increase in tonnages of cans, glass and textiles collected for recycling. Correspondingly, there was a 4.5% fall in tonnages of residual waste. Waste Watch's THAW project was the first serious attempt to measure the intergenerational influence of an education programme on behaviour at home (i.e. other than schools' own waste). It clearly shows that household recycling behaviour can be positively impacted by intergenerational influence via a practical school-based waste education model. However, although the model could potentially have a big impact if rolled out nationally, it will require seed funding and the long-term durability of the model has not yet been fully quantified.  相似文献   

8.
Medical waste management is of great importance due to its infectious and hazardous nature that can cause undesirable effects on humans and the environment. The objective of this study was to analyze and evaluate the present status of medical waste management in the light of medical waste control regulations in Nanjing. A comprehensive inspection survey was conducted for 15 hospitals, 3 disposal companies and 200 patients. Field visits and a questionnaire survey method were implemented to collect information regarding different medical waste management aspects, including medical waste generation, segregation and collection, storage, training and education, transportation, disposal, and public awareness.The results indicated that the medical waste generation rate ranges from 0.5 to 0.8 kg/bed day with a weighted average of 0.68 kg/bed day. The segregated collection of various types of medical waste has been conducted in 73% of the hospitals, but 20% of the hospitals still use unqualified staff for medical waste collection, and 93.3% of the hospitals have temporary storage areas. Additionally, 93.3% of the hospitals have provided training for staff; however, only 20% of the hospitals have ongoing training and education. It was found that the centralized disposal system has been constructed based on incineration technology, and the disposal cost of medical waste is about 580 US$/ton. The results also suggested that there is not sufficient public understanding of medical waste management, and 77% of respondents think medical waste management is an important factor in selecting hospital services.The problematic areas of medical waste management in Nanjing are addressed by proposing some recommendations that will ensure that potential health and environmental risks of medical waste are minimized.  相似文献   

9.
The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories – urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union’s solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.  相似文献   

10.
A four-stage systematic tracking survey of 240 households was conducted from the summer of 2011 to the spring of 2012 in a Chinese city of Suzhou to determine the characteristics of household hazardous waste (HHW) generated by the city. Factor analysis and a regression model were used to study the major driving forces of HHW generation. The results indicate that the rate of HHW generation was 6.16 (0.16–31.74, 95% CI) g/person/day, which accounted for 2.23% of the household solid waste stream. The major waste categories contributing to total HHW were home cleaning products (21.33%), medicines (17.67%) and personal care products (15.19%). Packaging and containers (one-way) and products (single-use) accounted for over 80% of total HHW generation, implying a considerable potential to mitigate HHW generation by changing the packaging design and materials used by manufacturing enterprises. Strong correlations were observed between HHW generation (g/person/day) and the driving forces group of “household structure” and “consumer preferences” (among which the educational level of the household financial manager has the greatest impact). Furthermore, the HHW generation stream in Suzhou suggested the influence of another set of variables, such as local customs and culture, consumption patterns, and urban residential life-style. This study emphasizes that HHW should be categorized at its source (residential households) as an important step toward controlling the HHW hazards of Chinese cities.  相似文献   

11.
This study includes a survey of the procedures available, techniques, and methods of handling and disposing of medical waste at medium (between 100 and 200 beds) to large (over 200 beds) size healthcare facilities located in Irbid city (a major city in the northern part of Jordan). A total of 14 healthcare facilities, including four hospitals and 10 clinical laboratories, serving a total population of about 1.5 million, were surveyed during the course of this research. This study took into consideration both the quantity and quality of the generated wastes to determine generation rates and physical properties. Results of the survey showed that healthcare facilities in Irbid city have less appropriate practices when it comes to the handling, storage, and disposal of wastes generated in comparison to the developed world. There are no defined methods for handling and disposal of these wastes, starting from the personnel responsible for collection through those who transport the wastes to the disposal site. Moreover, there are no specific regulations or guidelines for segregation or classification of these wastes. This means that wastes are mixed, for example, wastes coming from the kitchen with those generated by different departments. Also, more importantly, none of the sites surveyed could provide estimated quantities of waste generated by each department, based upon the known variables within the departments. Average generation rates of total medical wastes in the hospitals were estimated to be 6.10 kg/patient/day (3.49 kg/bed/day), 5.62 kg/patient/day (3.14 kg/bed/day), and 4.02 kg/patient/day (1.88 kg/bed/day) for public, maternity, and private hospitals, respectively. For medical laboratories, rates were found to be in the range of 0.053-0.065 kg/test-day for governmental laboratories, and 0.034-0.102 kg/test-day for private laboratories. Although, based on the type of waste, domestic or general waste makes up a large proportion of the waste volume, so that if such waste is not mixed with patient derived waste, it can be easily handled. However, based on infections, it is important for healthcare staff to take precautions in handling sharps and pathological wastes, which comprises only about 26% of the total infectious wastes. Statistical analysis was conducted to develop mathematical models to aid in the prediction of waste quantities generated by the hospitals studied, or similar sites in the city that are not included in this study. In these models, the number of patients, number of beds, and hospital type were determined to be significant factors on waste generation. Such models provide decision makers with tools to better manage their medical waste, given the dynamic conditions of their healthcare facilities.  相似文献   

12.
Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.  相似文献   

13.
Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.  相似文献   

14.
Previous reports have focused on the emission of coplanar polychlorinated biphenyls (Co-PCBs) which have a toxic mechanism similar to that of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/DFs) released from municipal solid waste (MSW) incineration. Such emissions accounted for a small percentage of all the dioxins (PCDDs/DFs and Co-PCBs) recorded at the toxicity equivalent (TEQ) level. There is, however, very little information about Co-PCBs, such as the quantities being released and their effect on overall environmental pollution. The aim of this research has been to clarify the substance flow of Co-PCBs from MSW incineration processes. The results reveal that whereas the input of Co-PCBs into the MSW incineration facilities in Kyoto City was 0.13–0.29 μg-TEQ per ton waste, the total output of Co-PCBs (the sum of Co-PCBs released from emission gas, fly ash, and bottom ash) was 4.9 μg-TEQ per ton waste. The total output was therefore found to be higher than the total input. Over 90% of the total PCBs were decomposed in the incineration process. In comparing the profiles of congeners and homologues, those in the MSW were found to be similar to those detected in the atmosphere and products containing PCBs, but different from those in the MSW incineration gas. Received: August 26, 1998 / Accepted: March 2, 1999  相似文献   

15.
This study investigated the medical waste management practices used by hospitals in northern Jordan. A comprehensive inspection survey was conducted for all 21 hospitals located in the study area. Field visits were conducted to provide information on the different medical waste management aspects. The results reported here focus on the level of medical waste segregation, treatment and disposal options practiced in the study area hospitals. The total number of beds in the hospitals was 2296, and the anticipated quantity of medical waste generated by these hospitals was about 1400 kg/day. The most frequently used treatment practice for solid medical waste was incineration. Of these hospitals, only 48% had incinerators, and none of these incinerators met the Ministry of Health (MoH) regulations. As for the liquid medical waste, the survey results indicated that 57% of surveyed hospitals were discharging it into the municipal sewer system, while the remaining hospitals were collecting their liquid waste in septic tanks. The results indicated that the medical waste generation rate ranges from approximately 0.5 to 2.2 kg/bed day, which is comprised of 90% of infectious waste and 10% sharps. The results also showed that segregation of various medical waste types in the hospitals has not been conducted properly. The study revealed the need for training and capacity building programs of all employees involved in the medical waste management.  相似文献   

16.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   

17.
The management of waste materials arising from home health and medical care services (HHMC wastes) in Japan is now receiving greater attention from governmental workers dealing with general household waste materials. In general, HHMC waste materials are collected in a mixed form, transported and disposed of along with municipal solid wastes. As a result, municipal workers are suffering needle stick accidents so that infections associated with HHMC waste materials may occur. The collection and transportation by patients and their families of HHMC waste materials with sharp-edges, such as injection needles, to medical-related facilities can prevent municipal workers from experiencing needle-prick accidents. One of the most important strategies for medical-related facilities is hence the education of patients and their families. Improved rules for handling HHMC waste materials are essential for the safe and effective management.  相似文献   

18.
The management of biomedical waste is a crucial issue in health and environmental management. Rules in India were promulgated in 1998, originally with a deadline of December 2000 and extended to December 2002; however, the actual situation remains far from satisfactory. A study conducted in 2001 by CEE, New Delhi; indicated an implementation deficit. To gauge the present situation, a survey was undertaken during 2005-2006. A systematic analysis of current biomedical waste management practices in smaller nursing homes and hospitals in Delhi was carried out. A total of 53 nursing homes, with bed strengths ranging from 20 to over 200, were included. The survey results show that there is a marked improvement in the segregation practices of biomedical waste in small private hospitals and nursing homes. The majority of nursing homes and hospitals were found to be using a service provider for the collection, management, and disposal of healthcare wastes. Data was collected through a questionnaire and field visits. This paper discusses the relevant data indicative of current practices of healthcare waste management in the nursing homes and small healthcare facilities in Delhi.  相似文献   

19.
Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. The operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.  相似文献   

20.
We studied the biochemical and anaerobic degradation characteristics of 29 types of materials to evaluate the effects of a physical composition classification method for degradable solid waste on the computation of anaerobic degradation parameters, including the methane yield potential (L0), anaerobic decay rate (k), and carbon sequestration factor (CSF). Biochemical methane potential tests were conducted to determine the anaerobic degradation parameters of each material. The results indicated that the anaerobic degradation parameters of nut waste were quite different from those of other food waste and nut waste was classified separately. Paper was subdivided into two categories according to its lignin content: degradable paper with lignin content of <0.05 g g VS?1, and refractory paper with lignin content >0.15 g g VS?1. The L0, k, and CSF parameters of leaves, a type of garden waste, were similar to those of grass. This classification method for degradable solid waste may provide a theoretical basis that facilitates the more accurate calculation of anaerobic degradation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号