首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At the moment Automobile Shredder Residue (ASR) is usually landfilled worldwide, but European draft Directive 2000/53/CE forces the development of alternative solutions, stating the 95%-wt recovery of an End of Life Vehicle (ELV) weight to be fulfilled by 2015. This work describes two industrial tests, each involving 250-300 t of ELVs, in which different pre-shredding operations were performed. The produced ASR materials underwent an extended characterization and some post-shredding processes, consisting of dimensional, magnetic, electrostatic and densimetric separation phases, were tested on laboratory scale, having as main purpose the enhancement of ASR recovery/recycling and the minimization of the landfilled fraction. The gathered results show that accurate depollution and dismantling operations are mandatory to obtain a high quality ASR material which may be recycled/recovered and partially landfilled according to the actual European Union regulations, with particular concern for Lower Heating Value (LHV), heavy metals content and Dissolved Organic Carbon (DOC) as critical parameters. Moreover post-shredding technical solutions foreseeing minimum economic and engineering efforts, therefore realizable in common European ELVs shredding plants, may lead to multi-purposed (material recovery and thermal valorization) opportunities for ASR reuse/recovery.  相似文献   

2.
Automobiles usually contain toxic substances, such as lubricants, acid solutions and coolants. Therefore, inappropriate handling of end-of-life vehicles (ELVs) will result in environmental pollution. ELV parts, which include metallic and non-metallic substances, are increasingly gaining recycling value due to the recent global shortage of raw materials. Hence, the establishment of a proper recycling system for ELVs will not only reduce the impact on the environment during the recycling process, but it will also facilitate the effective reuse of recycled resources. Prior to 1994, the recycling of ELVs in Taiwan was performed by related operators in the industry. Since the publishing of the “End-of-life vehicle recycling guidelines” under the authority of the Waste Disposal Act by the Environmental Protection Administration (EPA) in 1994, the recycling of ELVs in Taiwan has gradually become systematic. Subsequently, the Recycling Fund Management Board (RFMB) of the EPA was established in 1998 to collect a Collection–Disposal–Treatment Fee (recycling fee) from responsible enterprises for recycling and related tasks. Since then, the recycling channels, processing equipment, and techniques for ELVs in Taiwan have gradually become established. This paper reviews the establishment of the ELV recycling system, analyzes the current system and its performance, and provides some recommendations for future development. The reduction of auto shredder residue (ASR) is a key factor in maximizing the resource recovery rate and recycling efficiency. The RFMB needs to provide strong economic incentives to further increase the recycling rate and to encourage the automobile industry to design and market greener cars.  相似文献   

3.
Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a "waste-to-chemicals" perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.  相似文献   

4.
Since end-of-life vehicles (ELVs) contain toxic substances, they have to be treated properly. The purpose of this study was to obtain useful information for ELV management from the viewpoint of toxicity. We focused on lead as a representative toxic substance contained in vehicles and investigated the dynamic substance flow of lead contained in ELVs and its content in automobile shredder residue (ASR). A population balance model was used to estimate the number of ELVs generated between FYs (fiscal year) 1990–2020, employing a Weibull distribution for the lifespan distribution. Sixteen lead-containing components of the vehicle were considered. It was estimated that the annual number of ELVs generated would be 2.9 million as of FY2020. The results implied that it is hard to remove Pb completely. This is because 5,000–11,000 t-Pb will still remain in vehicles in use in FY2020 even though most components in new model vehicles could be replaced by lead-free alternatives. As of FY2010, the substance flow showed that Pb contained in ELVs amounted to 4,600–5,700 t-Pb. Of this, 13.2–14.0 % was contained in ASR. The Pb content in ASR could be dramatically decreased by FY2020, but it will continue to contain 240–420 mg-Pb/kg if the treatment system is not improved.  相似文献   

5.
Each European Member State must comply with Directive 2000/53/EC recycling and recovery targets by 2015, set to 85% and 95%, respectively. This paper reports a shredder campaign trial developed and performed in Italy at the beginning of 2008. It turns out to be the first assessment about the critical aspects belonging to the Italian End-of-Life Vehicles (ELVs) reverse supply chain involving 18 dismantling plants, a shredder plant and 630 ELV representatives of different categories of vehicles treated in Italy during 2006. This trial aims at improving the experimental knowledge related to ELVs added waste, pre-treatment, part reuse, recycling and final metal separation and car fluff disposal. Finally, the study also focuses on the calculation of the effective Italian ELV recycling rate, which results equal to 80.8%, and auto shredder residue (ASR) characterization. According to the results obtained in this work, ASR still contains up to 8% of metals and 40% of polymers that could be recovered. Moreover, physical-chemical analysis showed a Lower Heat Value of almost 20,000 kJ/kg and revealed the presence of pollutants such as heavy metals, mineral oils, PCBs and hydrocarbons.  相似文献   

6.
The present article analyses the current situation of End-of-Life-of-Vehicles (ELVs) management in Europe, with particular attention on Italian condition. Similarly to other European countries, metal recycling is the main activity of the whole system, but such situation is evolving due to the 2000/53/EC Directive, which sets out targets for Reuse, Recycling and Recovery of ELVs. Due to the relevance of the ELVs problem, in 2008 Italian Ministry of Environment subscribed a framework agreement with competent stakeholders as carmakers, dismantlers, shredders. The main result is an industrial plan to promote (amongst other objectives) technological progress for residual waste (Automotive Shredder Residue – ASR) treatment. According with Italian Trial 2006 analysis about ELVs, Reuse and Recycling rate is currently estimated to be about 81%.At the present time, dismantling plants constitute the first collection points for ELVs; for this reason, during 2009 an investigation has been done over a number of ten Authorized Treatment Facilities (ATFs) operating in Italy. The first step of the analysis was aimed to find out major practices and methods through observations of ATFs activities and interviews to operators. Furthermore, the depollution and dismantling treatments of about 70 different ELVs have been observed and timed in detail over a period of three months. The results included the identification of most relevant critical issues in ELVs treatment, such as distortions between scrapping activities and Directive’s regulation, and the assessment of the time and of the resources needed to perform each operation.In the second step of the survey, a process simulation model has been built on the basis of such data. The model was aimed to include the real variability and all the uncertainties that are typical of dismantling activities; it is intended as a tool for process layout planning and for its management. Some control parameters have been introduced; these are able to dynamically modify process path depending on ELVs queues and priorities. The model can also be used for the economic assessments of single operations or of the whole treatment activity.  相似文献   

7.
With reference to the European regulation about the management of End-of-Life Vehicles (ELVs), Directive 2000/53/EC imposes the achievement of a recycling target of 85%, and 95% of total recovery by 2015. Over the last few years many efforts have been made to find solutions to properly manage the waste coming from ELVs with the aim of complying with the targets fixed by the Directive.This paper focuses on the economical evaluation of a treatment process, that includes physical (size and density), magnetic and electrical separations, performed on the light fraction of the automobile shredder residue (ASR) with the aim of reducing the amount of waste to dispose of in a landfill and enhancing the recovery of valuable fractions as stated by the EU Directive. The afore mentioned process is able to enhance the recovery of ferrous and non-ferrous metals of an amount equal to about 1% b.w. (by weight) of the ELV weight, and to separate a high energetic-content product suitable for thermal valorization for an amount close to (but not higher than) 10% b.w. of the ELV weight.The results of the economical assessment led to annual operating costs of the treatment ranging from 300,000 €/y to 350,000 €/y. Since the considered plant treats about 13,500 metric tons of ASR per year, this would correspond to an operating cost of approximately 20–25 €/t. Taking into account the amount and the selling price of the scrap iron and of the non magnetic metal recovered by the process, thus leading to a gain of about 30 €/t per ton of light ASR treated, the cost of the recovery process is balanced by the profit from the selling of the recovered metals. On the other hand, the proposed treatment is able to achieve the fulfillment of the targets stated by Directive 2000/53/EC concerning thermal valorization and reduce the amount of waste generated from ELV shredding to landfill.  相似文献   

8.
In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste.Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC – European Waste Catalogue – code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.  相似文献   

9.
Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used.  相似文献   

10.
The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.  相似文献   

11.
Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact.  相似文献   

12.
Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical–physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.  相似文献   

13.
The Japanese Government introduced the Law on Recycling of End-of-Life Vehicles (ELV Recycling Law) in 2002. This law requires manufacturers to retrieve chlorofluorocarbons (CFCs), airbags, and automobile shredder residue (ASR) from ELVs and to properly recycle the remaining materials. This framework is compared with European ELV directives. Pilot-scale incineration plant testing has revealed a greater formation of by-product persistent organic pollutants (POPs) during the primary combustion of ASR compared to normal municipal solid waste. This may be attributed to the abundance of chlorine, Cu, and Fe in ASR, as Cu and Fe have been found to catalyze the formation of POPs under certain conditions. However, most by-product POPs were destroyed by the secondary combustion, and almost all were removed after flue gas treatment. The direct melting system is a shaft-type gasification and melting technology that has proved effective in many municipal solid waste applications. This system can be applied to ASR recycling for effective decomposition of brominated flame retardants and polybrominated dioxins.  相似文献   

14.
This article concentrates on the existing situation of hazardous industrial waste management in Vietnam. To realize the importance of the development of a Vietnam national strategy based on the reduce, reuse, recycle (3R) concept to the year 2020, the author summarizes the practice of recycling activities of hazardous industrial waste and discusses the challenges arising from increases in the quantity and types of waste and the level of hazard of the waste generated considering that the technical infrastructure for handling and managing the waste is inadequate and the legal system on environmental protection is lacking. In order to improve the existing situation of hazardous industrial waste management, the Vietnamese Government recently has played an increasing role in promoting regional and international cooperation on environmental protection through ratifying the international conventions on the environment including the Basel Convention on the Control of Trans-boundary Movements of Hazardous Waste and their Disposal and the International Labor Organization Convention on Safety in the Use of Chemicals at Work and by adhering to the concept of the material-cycle society. These steps are key opportunities for applying the principles of 3R to the recovery of value from hazardous waste in the future.  相似文献   

15.
Car manufacturers must eliminate automotive shredder residues (ASR). Two ways of incineration are of interest: at 850°C in municipal waste incinerators or at higher temperatures, above 1100°C in cement plants. These processes reduce the mass and the volume of waste to be disposed of in landfills and energy recovery might be possible. Regulations govern the emission of gaseous effluents to control environmental risk. To determine gaseous effluents from a pilot sacle or an industrial incineration plant, an artificial ASR was made by mixing three representative organic polymers present in the real ASR, namely polyvinylchloride, polyurethane and rubber. This mixture was incinerated at 850 and 1100°C in laboratory experiments and the analyses of the principal gaseous effluents such as carbon oxides, nitrogen oxides, volatile organic compounds, hydrochloric and hydrocyanic acids and sulphur compounds are presented and discussed. Lastly, in order to simulate artificial ASR behaviour, the composition of the combustion gases at equilibrium was calculated using a Gibbs energy minimisation code.  相似文献   

16.
A large amount of hazardous trichloromonofluoromethane (CFC-11) is contained in the polyurethane (PUR) foam of refrigerator cabinet. How to recover the cabinet of waste refrigerator with environmental awareness has been the pressing problem in the treatment of waste refrigerator. The published literature of waste refrigerator cabinets recovering mainly focuses on policy making and conceptual design. Little information relates to the production line of waste refrigerator cabinet recovering and its detailed operation, which is the urgent needed literature. In this paper, an environmental friendly production line for recovering the cabinet of waste refrigerators was reported for helping enterprise or government to construct line to recover the obsolete refrigerators. It included closed shearing process, activated carbon fiber absorption (ACFA) process, air current separation, and magnetic/eddy current separation. The optimized operating parameters of every process were obtained from the experiments. Then, experiment of recovering 50 waste refrigerator cabinets by the production line was performed in factory. Mass balances of the recovered materials were carried out. The result shown the recovery rate of waste refrigerator cabinet could reach 97.6%. Finally, comparison between the production line and other recovery technologies was made. The results indicated that the proposed line provided environment-friendly recovery of waste refrigerator cabinets while achieving low cost of production.  相似文献   

17.
A plant, designed for the thermo-valorisation of tyres, was specifically modified in order to treat Automobile Shredder Residue (ASR). Results from two full-scale combustion experiments, carried out on large ASR feeding lots (thousands of tons) indicate the proposed technology as a potential route to help the fulfilling of impending 95% reuse and recovery target set by the End of life Vehicle (ELV) Directive (January 2015). The paper describes the main operational troubleshot occurred during the first experiment (emissions at the stack out of regulatory limits and problems of clogging on the conveyer belt) and the consequent upgrading solutions (pre-treatment, introduction of waste double low-flow screw feeder and a cyclone prior to the main fan, modification of rotatory kiln inlet) adopted to allow, during the second long-term experiment, a continuous basis operation of the plant in full compliance with the discharge limit to the atmosphere. Characterization of both ASR and combustion residues allowed to quantify a 18% of combustion residues as not dangerous waste while only the 2% as hazardous one. A pre-treatment for the reduction of fines in the ASR was recommended in order to achieve the required energy recovery efficiency.  相似文献   

18.
Technology development has brought beneficial changes in the functions of smartphones but has the potential to impact the environment due to the high generation of waste smartphones. Thus, this study evaluates and compares environmental impact potentials from metals in waste smartphones to figure out the effect of smartphone model replacements on hazardous waste, resource depletion, and toxicity potentials. The total threshold limit concentration (TTLC) analysis is used to determine whether the waste smartphones would be classified as hazardous waste, and the life-cycle impact assessment methods are used to evaluate resource depletion, cancer, non-cancer, and ecotoxicity potentials. The TTLC results showed that the smartphone technology development did not reduce hazardous waste potentials. The life-cycle impact assessment results showed that the technology development overall reduced resource depletion potential but increased toxicity potential. In addition, priority metals contributing to the potentials were identified to effectively manage their environmental impacts. This study can provide fundamental information for smartphone manufacturers, waste smartphone recyclers and disposers, and e-waste policymakers to circulate resources and to prevent environmental pollutions from hazardous and toxic materials.  相似文献   

19.
This paper presents the results of life cycle inventory (LCI) analyses that were carried out to determine the environmental impacts (emissions, resource extractions and land use) of different newspaper waste management options for the Helsinki Metropolitan Area (HMA). LCI analyses were performed for five product systems, in which discarded newspapers were divided into two streams: separately collected newspapers and newspapers in mixed waste. In all the options, the manufacturing and printing processes of newspaper were kept unchanged. The waste management alternatives included combinations of material recycling, energy recovery and landfilling. These product systems were modelled using the current collection rate of newspaper and four additional collection rates. The LCIs of the product systems showed that the life cycle phase causing the most environmental impacts was the paper mill. When comparing the different waste management systems, the energy recovery options were in general superior to landfilling. The ecological implications of the increased energy recovery and decreased material recycling of newspaper were, however, not yet considered in the study. These aspects were assessed in the life cycle impact assessment (LCIA), which was performed after the LCI phase.  相似文献   

20.
An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the ‘fuel from waste’ so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing ‘fuel from waste’ market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the ‘fuel from waste’ in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号