首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 °C was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 °C and 55 °C, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150–190 L CH4/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6–6.5 L vs. 3–3.5 L CH4/kg COD·day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.  相似文献   

2.
The effectiveness of methane fermentation treatment used in food waste processing is currently limited by solubilization and acidogenesis. In efforts to improve the treatment process, this study examined the effects of temperature on solubilization and acidogenesis. The solubilization rate of food waste, which was based on suspended solid removal, was 47.5%, 62.2%, 70.0%, 72.7%, 56.1% and 45.9% at 15 °C, 25 °C, 35 °C, 45 °C, 55 °C and 65 °C, respectively. Solubilization rate was accelerated from the middle to late experimental periods under mesophilic (35 °C and 45 °C) conditions. In contrast, overall solubilization rate was significantly lower under thermophilic (55 °C and 65 °C) conditions than under mesophilic conditions, although solubilization occurred rapidly in the early experimental period. The production of biogas was high under mesophilic conditions of 35 °C and 45 °C, at 64.7 and 62.7 mL/g-VS, respectively, while it was scarce under thermophilic conditions. Solubilization of food waste was accelerated under both mesophilic and thermophilic conditions; however, solubilization rate was observed to be particularly high under mesophilic conditions, and a shortening of the hydraulic retention time is expected under thermophilic conditions.  相似文献   

3.
Many Chinese biogas plants run in the lower range of mesophilic conditions. This study evaluated the performance of a completely stirred anaerobic reactor treating pig manure at different temperatures (20, 28 and 38 °C). The start-up phase of the reactor at 20 °C was very long and extremely poor performance was observed with increasing organic loading rate (OLR). At an OLR of 4.3 g ODM L?1 d?1, methane production at 28 °C was comparable (3% less) with that at 38 °C, but the risk of acidification was high at 28 °C. At low OLR (1.3 g ODM L?1 d?1), the biogas process appeared stable at 28 °C and gave same methane yields as compared to the reactor operating at 38 °C. The estimated sludge yield at 28 °C was 0.065 g VSS g?1 CODremoved, which was higher than that at 38 °C (0.016 g VSS g?1 CODremoved).  相似文献   

4.
High temperature and pressure microwave (MW) irradiation was investigated as a pre-treatment to enhance anaerobic biodegradability and methane production from a model kitchen waste (KW). Heating rates of 7.8, 3.9 and 1.9 °C/min from room temperature to a final pre-treatment temperature of 175 °C with 1 min temperature holding time were tested. MW irradiation was successful in solubilization of particulate chemical oxygen demand (COD) resulting in higher soluble COD, protein and sugar concentrations in the supernatant phase (<0.45 μm) as well as in the whole fraction of pretreated KW compared to controls (not pretreated). Anaerobic biodegradability of the supernatant and whole fractions of pretreated KW was assessed by using a batch biochemical methane potential assay (BMP) at 33 °C. Although the highest level of solubilization was achieved at a heating rate of 1.9 °C/min, improvement in anaerobic biodegradability was observed only at the fastest heating rate of 7.8 °C/min for whole waste and for all conditions with the supernatant phase. BMP indicated increased biodegradability of between 5% and 16% for the supernatant fraction relative to controls. For the whole fraction, anaerobic biodegradability improved by 9% at a heating rate of 7.8 °C/min.  相似文献   

5.
In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH4-N and/or free NH3) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m3 d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm3/kg VSfed. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm3/kg VSfed). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.  相似文献   

6.
Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H2 and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m3 to 9.10 MJ/N m3 with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.  相似文献   

7.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

8.
Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 ± 1 °C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 ± 1 °C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 ± 13.87 mL/g TSadded was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42–58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 ± 11.01 mL/g TSadded and methane yield of 259.35 ± 13.85 mL/g TSadded were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.  相似文献   

9.
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm3 cm?3, temperature of 70 °C and conductivity of 4.32 mS cm?1. TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20 °C to 70 °C, composting material with 0.10–0.70 cm3 cm?3 moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors.  相似文献   

10.
Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products.The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500 °C but the polycyclic aromatic hydrocarbons became the major compounds at 900 °C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700 °C under steam gasification condition.For WBC, both char utilization by pyrolysis at low temperature (500 °C) and syngas recovery by steam gasification at higher temperature (900 °C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500 °C) might be one of viable options. Steam gasification at 900 °C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered.  相似文献   

11.
Commingled household waste (HW) that had a controlled composition was autoclaved at elevated pressures in the presence of saturated steam for one hour at the nominal temperature levels of 130 °C, 160 °C and 200 °C. The focus of this study was the impact of temperature/pressure on hydrolysis of organic matter during autoclaving and the extent of its hydrolysis. The pH decreased with autoclaving temperature with which it had a linear relationship, and ranged from 7.4 and 6 in floc, and 6.7 and 3.6 in steam condensate. Overall, organic matter solubilisation, as indicated by dissolved organic carbon, biological and chemical oxygen demands, and total dissolved solids, increased with temperature. Lignin did not appear to hydrolyse. Hemicellulose hydrolysed and degraded the most, followed by cellulose. The highest recoveries of hemicellulose and cellulose in solution were achieved at 160 °C, although the latter could be due to experimental error. The largest losses of hemicellulose and cellulose were recorded at 200 °C. The performance of the system in respect to hydrolysis was inferior compared to other hydrothermal systems, particularly those employing wet oxidation.  相似文献   

12.
Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VSadded was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VSadded, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VSadded was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.  相似文献   

13.
The use of abundant waste materials with high carbohydrate content may contribute substantially to reduction of biofuels production cost. The present study aimed at optimizing the combined effect of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes (KW) for maximizing the production of fermentable soluble sugars. To this end, acid pretreatment of KW samples was performed with hydrochloric acid (0–3% HCl) at 30–100 °C for 0–120 min treatment time. Alternatively, alkaline pretreatment of KW samples was performed with potassium hydroxide solution (0–11%) at constant temperature and time (0 °C and 20 min, respectively). KOH pretreatment at such conditions targets to degrade the resistant starch of KW samples. Both acid and alkaline pretreatments were followed by addition of variable levels of enzyme dosage (0–3.6% v/v α-amylase and 0–3.2% v/v amyloglucosidase-AMG) at constant pH, temperature and time (pH = 5, T = 50 °C and t = 30 min, respectively). Based on our results, glucose concentration increased by ~300% after pretreatment with either acid or KOH in combination with enzymatic hydrolysis (2% HCl, 85 °C, 80 min, 0.1% α-amylase, AMG, and 1% KOH, 0 °C, 20 min, 1.1% α-amylase, 0.4% AMG) compared to raw (untreated) KW. Estimating the different YG yields at KW loading of 5%, an increase of 192% and 121% for total soluble monosugars and total soluble sugars, respectively, was succeeded compared to untreated KW. The effect of solids loading on the obtained sugar yields using the optimum conditions for thermo-chemical pretreatment followed by enzymatic hydrolysis was also tested resulting to 27.5% increase of the soluble glucose yield when half of the solids loading (2.5%) was used. A decrease of total soluble sugars yield by 32.2% was observed when solely acid hydrolysis at optimum conditions from our previous study was applied at 30% solids loading.  相似文献   

14.
Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 °C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 ± 0.02 L g VSfeed?1 to 0.55 ± 0.05 L g VSfeed?1 as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.  相似文献   

15.
The effects of temperature on the release of chemical components of six solid organic materials under conditions of oversaturation were investigated in this paper. The six materials were peat moss (PM), weathered coals (WC), charred rice husks (CRH), sawdust (Sd), turfgrass clippings (TC), and chicken manure (CM). Significant differences were observed in the available nitrogen and phosphorus content of the aqueous extracts of organic materials at different temperatures. The available nitrogen content in aqueous extracts of PM and WC at 25 °C was higher than that registered at 15 °C and 35 °C. Available nitrogen content in the aqueous extracts of CRH, Sd, TC, and WC at 35 °C was higher than at 15 °C and 25 °C. The available phosphorus content in the aqueous extracts of organic materials at 35 °C was higher than that available at 15 °C and 25 °C, with the exception of Sd. In addition, the release of available phosphorus in the aqueous solution of organic materials at different temperatures varied constantly for 108 h. The release of potassium (K+) and sodium (Na+) ions in the aqueous extracts of organic materials was basically steady over time, with the exception of CM. High temperature (35 °C) may significantly hasten the release of K+ from organic substrates (except for WC) with low temperatures significantly inhibiting release of K+ in Sd and CRH. High temperatures (35 °C) might significantly facilitate the release of Na+ in CM and TC. However, no significant differences were manifested in the release of Na+ from organic substrates at different temperatures, with the exception of CM and TC. Moreover, no significant differences were observed in the release of calcium, magnesium and iron ions with time, nor were there any significant differences in the contents of iron ions in the aqueous extracts of organic materials at different temperatures. The results indicate that multiple mediums should be pretreated in water for a week before being used for planting. They should be used when all mineral elements of organic materials are steady and ignoring the effect of organic mediums.  相似文献   

16.
A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 °C, 950 °C, and 1150 °C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 °C and 1150 °C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700–1000 °C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000–1200 °C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.  相似文献   

17.
An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.  相似文献   

18.
Potato peel waste (PPW) as zero value byproduct generated from food processing plant contains a large quantity of starch, non-starch polysaccharide, lignin, protein, and lipid. PPW as one promising carbon source can be managed and utilized to value added bioproducts through a simple fermentation process using undefined mixed cultures inoculated from wastewater treatment plant sludge. A series of non-pH controlled batch fermentations under different conditions such as pretreatment process, enzymatic hydrolysis, temperature, and solids loading were studied. Lactic acid (LA) was the major product, followed by acetic acid (AA) and ethanol under fermentation conditions without the presence of added hydrolytic enzymes. The maximum yields of LA, AA, and ethanol were respectively, 0.22 g g?1, 0.06 g g?1, and 0.05 g g?1. The highest LA concentration of 14.7 g L?1 was obtained from a bioreactor with initial solids loading of 60 g L?1 at 35 °C.  相似文献   

19.
In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded.We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.  相似文献   

20.
Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 °C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO3:H2O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号