首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present paper has been to study the effect of pig slurry waste type, fresh or anaerobically digested, and the effect of initial pH on ammonia air stripping from pig slurry waste at high temperature (80 degrees C). Stripping process as pre- or post-treatment to anaerobic digestion has been also evaluated. Treatment performances differ according to pig slurry type. When fresh pig slurry is used, despite working at 80 degrees C, a high initial pH (11.5) is required for complete ammonia removal. On the other hand, for digested pig slurry, complete ammonia removal without pH modification is possible and organic matter significantly less contaminates recovered ammonia salt. Batch anaerobic tests showed that ammonia air stripping is not an advisable pre-treatment to pig slurry anaerobic digestion.  相似文献   

2.
In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS 13C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS 13C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowest increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.  相似文献   

3.
Since the indiscriminate disposal of pig slurry can cause not only air pollution and bad odours but also nutrient pollution of ground waters and superficial waters, composting is sometimes used as one environmentally acceptable method for recycling pig manure. The aim of this study was to evaluate the effect of composting pig slurry on its sanitation (evaluated by ecotoxicity assays and pathogen content determination), as well as to determine the effect of a carbon-rich bulking agent (wood shavings, WS) and the starting C/N ratio on the changes undergone by different chemical (volatile organic matter, C and N fractions) and microbiological (microbial biomass C, ATP, dehydrogenase activity, urease, protease, phosphatase, and beta-glucosidase activities) parameters during composting. Pig slurry mixed with bulking agent (P+WS) and the solid faction separated from it, both with (PSF+WS) and without bulking agent (PSF), were composted for 13 weeks. Samples for analysis were taken from composting piles at the start of the process and at 3, 6, 9, and 13 weeks after the beginning of composting. The total organic carbon, water soluble C and ammonium content decreased with composting, while Kjeldahl N and nitrate content increased. The nitrification process in the PSF+WS pile was more intense than in the PSF or P+WS composting piles. The pathogen content decreased with composting, as did phytotoxic compounds, while the germination index increased with compost age. Piles with bulking agent showed higher values of basal respiration, microbial biomass carbon, ATP and hydrolase activities during the composting process than piles without bulking agent.  相似文献   

4.
Composting of animal manures is believed as an alternative way for directly recycling them in farms, and therefore assessment of compost maturity is crucial for achieving high quality compost. Fluorescence excitation-emission matrices (EEMs) combined with regional integration analysis is presented to assess compost maturity. The results showed that the EEM contours of water-extract organic matter (WEOM) from immature composts exhibited four peaks at excitation/emission (Ex/Em) of 220/340 nm, 280/340 nm, 220/410 nm, and 330/410 nm, whereas EEM contour of WEOM from mature composts had only two peaks at Ex/Em of 230/420 nm and 330/420 nm. Pearson correlation demonstrated that peaks intensity rather than their ratios had a significantly correlation with the common indices assessing compost maturity, whereas the normalized excitation-emission area volumes (Φi,ns) from regional integration analysis had a stronger correlation with the common indices assessing compost maturity than peaks intensity. It is concluded that the Φi,ns from regional integration analysis are more suitable to assess the maturity of compost than the intensities of peaks. Therefore, the fluorescence spectroscopy combined with regional integration analysis can be used as a valuable industrial and research tool for assessing compost maturity, given its high sensitivity and selectivity.  相似文献   

5.
Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment.  相似文献   

6.
This research was aimed at assessing the fertilizer quality and public health implications of using digestate biofertilizer from the anaerobic digestion of food wastes and human excreta. Twelve (12) kg of food wastes and 3 kg of human excreta were mixed with water in a 1:1 w/v to make 30-l slurry that was fed into the anaerobic digester to ferment for 60 days at mesophilic temperature (22–31 °C). Though BOD, COD, organic carbon and ash content in the feedstock were reduced after anaerobic digestion by 50.0%, 10.6%, 74.3% and 1.5% respectively, nitrogen, pH and total solids however increased by 12.1%, 42.5% and 12.4% respectively. The C/N ratios of the feedstock and compost are 135:1 and 15.8:1. The residual total coliforms of 2.10 × 108 CFU/100 ml in the digestate was above tolerable limits for direct application on farmlands. Microbial analysis of the digestate biofertilizer revealed the presence of Pseudomonas, Klebsiella, Clostridium, Bacillus, Bacteroides, Penicillum, Salmollena, and Aspergillus. Klebsiella, Bacillus, Pseudomonas, Penicillum and Aspergillus can boost the efficiency of the biofertilizer through nitrogen fixation and nutrient solubility in soils but Klebsiella again and Salmollena are potential health risks to end users. Further treatment of the digestate for more efficient destruction of pathogens is advised.  相似文献   

7.
In this experimental study, the biogas digestate from mesophilic batch anaerobic co-digestion of poultry manure and an agricultural residue, sunflower hulls, was characterized, particularly in terms of heavy metal content, in order to evaluate whether the biogas digestate was suitable for land applications. Ni, Zn, Cu, Pb, Cr, Cd, and Hg were detected in the biogas digestate in each trial, however, their concentrations were always lower than the limit values stated in Turkish regulations. The main source of heavy metals in the biogas digestate seemed to be the poultry manure, not the agricultural residue. The commercial feedstuffs that are frequently supplemented with various essential elements to promote optimum nutrient supply and optimum growth rates may have contributed to heavy metals presence in the biogas digestate. The results indicated that the biogas digestate from anaerobic co-digestion of manure and agricultural residue could be utilized as fertilizer in agricultural applications.  相似文献   

8.
Parque Porcino de Ventanilla has an extension of 840ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.  相似文献   

9.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

10.
The aim of the study was to examine safe reuse and recycling of organic waste digestate obtained from a biogas plant (5 % total solid) with enhanced nutrient value through vermitechnology. Two indigenous epigeic earthworm species Perionyx excavates and Perionyx sansibaricus were tried individually for this purpose. The results clearly show a significant increase in pH values from 6.5–7.4, electrical conductivity (21.3–21.7 %), total N (84.5–94.6 %), total P (35.9–47.1 %), total K (49.8–52.6 %), Ca (41.9–41.9 %) and a significant decrease in total organic C (17.1–22.4 %), C/N ratio (7.2–6.9), C/P ratio (20.3–20.6), COD (51.9–55.7 %), BOD (85.5–91.2 %). Similarly, indicator organisms (fecal coliforms and fecal streptococci) showed decrement at the end of the composting period (60 days). Fecal Coliforms reduce to nil, while in fecal streptococci a 6 log reduction was observed. Oxygen uptake rate dropped to 67.4–70 % for vermireactors. Overall, the aforementioned findings highlighted that the indigenous earthworm species could enhance the nutrient value of the anaerobic digestate, which could be utilized as an efficient soil conditioner.  相似文献   

11.
Anaerobic co-digestion of pig slurry with four agricultural substrates (tomato, pepper, persimmon and peach) was investigated. Each agricultural substrate was tested in co-digestion with pig slurry at four inclusion levels: 0%, 15%, 30% and 50%. Inclusion levels consisted in the replacement of the volatile solids (VS) from the pig slurry with the VS from the agricultural substrate. The effect of substrate type and inclusion level on the biochemical methane potential (BMP) was evaluated in a batch assay performed at 35 °C for 100 days. Agricultural substrate’s chemical composition was also analyzed and related with BMP. Additionally, Bacteria and Archaea domains together with the four main methanogenic archaeal orders were quantified using quantitative real-time TaqMan polymerase chain reaction (qPCR) at the end of the experiment to determine the influence of agricultural substrate on sludge’s microbial composition. Results showed that vegetable substrates (pepper and tomato) had higher lipid and protein content and lower carbohydrates than fruit substrates (persimmon and peach). Among substrates, vegetable substrates showed higher BMP than fruit substrates. Higher BMP values were obtained with increasing addition of agricultural substrate. The replacement of 50% of VS from pig slurry by tomato and pepper increased BMP in 41% and 44%, respectively compared with pig slurry only. Lower increments in BMP were achieved with lower inclusion levels. Results from qPCR showed that total bacteria and total archaea gene concentrations were similar in all combinations tested. Methanomicrobiales gene concentrations dominated over the rest of individual archaeal orders.  相似文献   

12.
The influence of the proportion of C- and N-rich raw materials (initial C/N ratio) and bulking agent on the chemical functional groups composition, humic-like substances (HS-like) content and physicochemical properties of composts was assessed. To achieve these goals, seven initial mixtures (BA1–6 and C1) of dog food (N-rich raw material) were composted with wheat flour (C-rich raw material). Composts were analyzed in terms of chemical functional groups, physicochemical, maturity and stability parameters.The C-rich raw material favored the formation of oxidized organic matter (OM) during the composting process, as suggested by the variation of the ratios of the peaks intensity of FT-IR spectra, corresponding to a decrease of the polysaccharides and an increase of aromatic and carboxyl-containing compounds. However, although with high proportion of C-rich raw material, mixtures with low initial C/N seems to have favored the accumulation of partially oxidized OM, which may have contributed to high electrical conductivity values in the final composts. Therefore, although favoring the partial transformation of OM into stabilized HS-like, initial mixtures with high proportion of C-rich raw material but with low initial C/N led to unstable composts.On the other hand, as long as a high percentage of bulking agent was used to promote the structure of biomass and consequently improve of the aeration conditions, low initial C/N was not a limiting factor of OM oxidation into extractable stabilized humic-like acids.  相似文献   

13.
Van Soest fractionation is widely employed to characterize exogenous organic matter. The soluble fraction of Van Soest fractionation (SOL, extracted using hot water and then neutral detergent) often increases in line with compost maturity, although it is generally considered as labile. We have developed an alternative extraction method that comprises four successive steps (extraction using hot water, sodium tetraborate, dichloromethane/methanol and chelating resin) in order to clarify the chemical nature of the SOL fraction and explain its biodegradability. This method was tested on municipal solid waste compost sampled during the thermophilic phase (MSWi) and after 8 months of composting (MSWm). Both methods extracted similar proportions of organic matter. The composition of the residues was similar in MSWm although differences were noted for the extraction of polysaccharides and lipids in the case of MSWi. The hot water extractable fraction decreased during composting. Its high biodegradability in MSWi was linked to the high polysaccharide content revealed by pyrolysis–GC/MS and FTIR spectroscopy. The increase in the sodium tetraborate extractable fraction mainly explained the increase in the SOL fraction during composting. This was made up of N-containing compounds, polysaccharides and lipids in the immature compost, and a majority of N-containing compounds in the mature compost. During composting, the stabilization of organic matter in the SOL fraction extractable by sodium tetraborate and EDTA might principally involve N-containing structures through the formation of complexes of organic matter with metal ions, especially Ca2+, which may be broken down during extraction of the Van Soest soluble fraction. These mechanisms still need to be investigated.  相似文献   

14.
Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m?2 week?1. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.  相似文献   

15.
This article reports on a literature review and meta-analysis of 82 studies, mostly life cycle assessments (LCAs), which quantified end-of-life (EOL) management options for organic waste. These studies were reviewed to determine the environmental preferability, or lack thereof, for a number of EOL management methods such as aerobic composting (AC), anaerobic digestion (AD), gasification, combustion, incineration with energy recovery (often denoted as waste-to-energy incineration), mechanical biological treatment, incineration without energy recovery (sometimes referenced by just the word “incineration”), and landfill disposal with and without energy recovery from generated methane. Given the vast differences in boundaries as well as uncertainty and variability in results, the LCAs among the 82 studies provided enough data and results to make conclusions regarding just four EOL management methods – aerobic composting, anaerobic digestion, mass burn waste-to-energy (WTE), and landfill gas-to-energy (LFGTE). For these four, the LCAs proved sufficient to determine that aerobic composting and anaerobic digestion are both environmentally preferable to either WTE or LFGTE in terms of climate change impacts.For climate change, LCA results were mixed for WTE versus LFGTE. Furthermore, there is a lack of empirically reliable estimates of the amount of organics input to AD that is converted to energy output versus remaining in the digestate. This digestate can be processed through aerobic composting into a compost product similar to the compost output from aerobic composting, assuming that the same type of organic materials are managed under AD as are managed via AC. The magnitude of any trade-off between generation of energy and production of compost in an AD system appears to be critical for ranking AC and AD for differing types of organics diversion streams. These results emphasize how little we generally know, and exemplify the fact that in the reviewed literature no single EOL management method consistently topped all other management options across all environmental impacts, and that future studies must strive to match existing analytical boundaries and alternatives assessed to increase knowledge if as a community we expect to be able to make even more generalized conclusions.  相似文献   

16.
This research aimed at assessing the properties of guinea pig manure digestate from low-cost tubular digesters for crops fertilization in rural Andean communities. To this end, field trials were carried out to evaluate the effect of the digestate on two common Andean crops: potato (Solanum tuberosum) and forage (Lolium multiflorum and Trifolium pratense L.). The potato yield (20-25 tha(-1)) increased by 27.5% with digestate, by 15.1% with pre-compost and by 10.3% with the mixture, compared to the control. The forage yield (20-21 tha(-1)) increased by 1.4% with digestate - 50% dose, and by 8.8% with digestate - 100% dose and digestate - 150% dose, compared to the control. The results suggest that the digestate is an appropriate substitute of manure pre-compost for potato fertilization. The results with forage indicate that it can be applied in a range of doses, according to the amount produced by the digester. Currently, manure is either used for cooking or as fertilizer. With low-cost tubular digesters implementation, it could be used to feed the digester, using the digestate for crops fertilization and biogas for cooking; improving household living conditions and protecting the environment. Since soil properties in rural Andean communities differ from experimental layouts, the effect of fertilizers should be re-evaluated in-situ in future research studies.  相似文献   

17.
A fresh bagasse sample (0-month) and two composted bagasse and pig manure mixed samples (1-month and 6-month) were used to produce carbon chars. Sample pyrolysis showed greater carbon char yields were obtained from the compost samples than from the bagasse sample. Fourier transform infrared spectra suggested that the chemical structures of the bagasse sample and the two compost samples were quite different, but that the three carbon chars obtained from those precursors were similar. Among the three pyrolyzed chars, the 0-month bagasse char displayed the largest sorption capacity of 3333 mg kg?1 for the hydrophilic pollutant phenol, presumably resulting from its greater carbon content and O/C ratio. However, the sorption capacities for the hydrophobic pollutant naphthalene of the tow compost chars (3-month, 2001 mg kg?1; 6-month, 1667 mg kg?1) were greater than that of the 0-month bagasse char (1428 mg kg?1). The results indicate that the compost chars had a greater preferential affinity for naphthalene than that in the bagasse char, suggesting that the compost chars possessed greater hydrophobicity.  相似文献   

18.
Vacuum evaporation consists in the boiling of a liquid substrate at negative pressure, at a temperature lower than typical boiling temperature at atmospheric conditions. Condensed vapor represents the so called condensate, while the remaining substrate represents the concentrate.This technology is derived from other sectors and is mainly dedicated to the recovery of chemicals from industrial by-products, while it has not been widely implemented yet in the field of agricultural digestate treatment. The present paper relates on experimental tests performed in pilot-scale vacuum evaporation plants (0.100 and 0.025 m3), treating filtered digestate (liquid fraction of digestate filtered by a screw-press separator). Digestate was produced by a 1 MWe anaerobic digestion plant fed with swine manure, corn silage and other biomasses. Different system and process configurations were tested (single-stage and two-stage, with and without acidification) with the main objectives of assessing the technical feasibility and of optimizing process parameters for an eventual technology transfer to full scale systems.The inputs and outputs of the process were subject to characterization and mass and nutrients balances were determined.The vacuum evaporation process determined a relevant mass reduction of digestate.The single stage configuration determined the production of a concentrate, still in liquid phase, with a total solid (TS) mean concentration of 15.0%, representing, in terms of mass, 20.2% of the input; the remaining 79.8% was represented by condensate. The introduction of the second stage allowed to obtain a solid concentrate, characterized by a content of TS of 59.0% and representing 5.6% of initial mass.Nitrogen balance was influenced by digestate pH: in order to limit the stripping of ammonia and its transfer to condensate it was necessary to reduce the pH. At pH 5, 97.5% of total nitrogen remained in the concentrate. This product was characterized by very high concentrations of total Kjeldhal nitrogen (TKN), 55,000 mg/kg as average.Condensate, instead, represented 94.4% of input mass, containing 2.5% of TKN. This fraction could be discharged into surface water, after purification to meet the criteria imposed by Italian regulation. Most likely, condensate could be used as dilution water for digestion input, for cleaning floor and surfaces of animal housings or for crop irrigation.The research showed the great effectiveness of the vacuum evaporation process, especially in the two stage configuration with acidification. In fact, the concentration of nutrients in a small volume determines easier transportation and reduction of related management costs. In full scale plants energy consumption is estimated to be 5–8 kWhe/m3 of digestate and 350 kWht/m3 of evaporated water.  相似文献   

19.
A number of hydrophobic organochlorines, such as hexachlorobenzene and polychlorinated dibenzo‐p‐dioxins/dibenzofurans (PCDD/Fs), have been reported to be persistent and bioaccumulative; however, their availability to biota appear to be limited due to strong sorption to soil/sediment and sequestration with age. Studies to date have shown that the bioavailability of hydrophobic organic chemicals (HOCs) in sediments is highly variable, depending not only on a chemical's lipophicity (Kow), but also molecular steric conformation and sediment characteristics. A subdomain of sediment organic carbon, so‐called black carbon (BC), which has much higher affinity to planar HOCs than amorphous organic carbon, has been found to be the predominant repository of many HOCs. The sediment/soil‐bound HOCs are composed of a rapid and reversible desorbing labile fraction and a slow‐desorbing, or resistant‐to‐desorbing, nonlabile fraction. The latter can account for up to 98 percent of the total. A number of chemical extraction methods have been under development to measure the actual bioavailable concentrations in soil/sediment and have shown some correlation to the results of bioaccumulation and/or biodegradation tests. To date, most of the published studies on this subject have focused on polynuclear aromatic hydrocarbons (PAHs). This review summarizes the governing processes and the testing methodologies relevant to the environmental bioavailability of hydrophobic organochlorines in soils and sediments. © 2004 Wiley Periodicals, Inc.  相似文献   

20.
Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO2 production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a “soil effect” which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg?1 of C remained after aerobic incubation, as compared to 4000 mg kg?1 at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions (ν(C–O)) disappeared at 1000 and 1200 cm?1, as also confirmed by the 13C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号