首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.  相似文献   

2.
The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.  相似文献   

3.
This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.  相似文献   

4.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

5.
Incineration of municipal solid wastes (MSWs) produces by-products which can be broadly classified as bottom and fly ashes. Since MSW incineration started, possibilities other than landfilling the incineration residues have been sought; most initiatives in this sense tend to use these residues as aggregate substitute in pavements and other road construction elements. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. The study includes not only the specific aspects regarding its role as pavement element, but also the assessment of the environmental effects. Therefore, together with the determination of physical (moisture content, apparent and bulk densities, crystallinity, etc.) and engineering properties (particle size distribution, abrasion and impact resistance, etc.), full chemical characterization of the bottom ash and the study of leaching as a function of aging time have been undertaken. The results obtained indicate that the metal content of both the raw bottom ash and its leachates fulfill the environmental regulations provided that the bottom ash is stored for at least one month. Engineering properties of the bottom ash are close to those of natural aggregates and, thus, road-construction use of these residues seems to be feasible.  相似文献   

6.
Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.  相似文献   

7.
This study aimed to identify distribution of metals and the influential factors on metal concentrations in incineration residues. Bottom ash and fly ash were sampled from 19 stoker and seven fluidized bed incinerators, which were selected to have a variety of furnace capacity, furnace temperature, and input waste. In the results, shredded bulky waste in input waste increased the concentration of some metals, such as Cd and Pb, and the effect was confirmed by analysis of shredded bulky waste. During MSW incineration, lithophilic metals such as Fe, Cu, Cr, and Al remained mainly in the bottom ash while Cd volatilized from the furnace and condensed to the fly ash. About two thirds of Pb and Zn was found in the bottom ash despite their high volatility. Finally, based on the results obtained in this study, the amount of metal in incineration residues of MSW was calculated and the loss of metal was estimated in terms of mass and money. A considerable amount of metal was found to be lost as waste material by landfilling of incineration residues.  相似文献   

8.
The elemental composition of the industrial waste incineration bottom ash (IWIBA) samples collected from three different types of incinerator with different kinds of wastes were compared. The major-to-ultratrace elements in the IWIBA samples were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). As a result, ca. 40 elements in the concentration range from milligrams per gram to submicrograms per gram could be determined with relative standard deviations of less than 5%. The IWIBA sample from petrochemical wastes contained lower concentrations of the elements, because fewer mineral constituents were contained in the input waste materials. On the contrary, the elemental concentrations in the IWIBA sample from industrial solid wastes provided the highest values for most elements, while the elemental compositions of the IWIBA sample from food wastes were similar to those of municipal solid waste incineration bottom ash. In addition, it was found from the analytical results that the levels of various heavy metals such as Cr, Mn, Fe, Ni, Cu, As, Zr, Mo, Sb, Ba, and Pb were higher in the IWIBA samples than in municipal solid waste incineration bottom ash. The enrichment factors of the elements in the IWIBA samples were estimated from the analytical results to compare the elemental distributions in incineration bottom ashes in relation to their mining influence factors, which are the indices for human use of the elements.  相似文献   

9.
With the increase in the number of municipal solid waste incineration (MSWI) plants constructed in China recently, great attention has been paid to the heavy metal leaching toxicity of MSWI residues. In this study, the effects of various parameters, including extractant, leaching time, liquid-to-solid ratio, leachate pH, and heavy metal content, on the release properties of Cd, Cr, Cu, Ni, Pb, and Zn from MSWI bottom ash were investigated. Partial least-squares analysis was employed to highlight the interrelationships between the factors and response variables. Both experimental research and geochemical modeling using Visual MINTEQ software were conducted to study the pH-dependent leaching behavior of these metals in fresh and weathered bottom ash, considering precipitation/dissolution and surface complexation reactions (adsorption by hydrous ferric oxide and amorphous aluminum oxide/hydroxide). The results showed that leachate pH was the predominant factor influencing heavy metal leachability. The leaching of Cu, Pb, and Zn was mainly controlled by precipitation/dissolution reactions, whereas surface complexation had some effect on the leaching of Cr, Cd, and Ni for certain pH ranges. The modeling results aggreed well with the experimental results. Part of this work was presented at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   

10.
Two new pre-treatment methods (water-washing/carbonation and carbonation/phosphate stabilization) of municipal solid waste (MSW) incinerator residues were evaluated by column leaching tests under aerobic conditions and anaerobic conditions (which were changed to aerobic conditions after 10 months). A mixture of bottom ash and fly ash (5:1 ratio) was pre-treated using each method. Shredded incombustible residues (SIR) were added to each ash preparation in proportions similar to the ratios present in landfills. For comparison, landfill wastes typical of Japan, namely, a mixture of bottom ash, chelating-pre-treated fly ash, and SIR, were also examined. Leachate samples were collected periodically and analysed over a 15-month period. When compared with chelating pretreatment, both water-washing/carbonation and carbonation/ phosphate stabilization reduced the leaching of Pb, Al, and Cu by about one to two orders of magnitude. Moreover, the initial concentrations of Ca and Pb in leachates from column of water-washing/carbonation were 56-57% and 84-96% less than those from the column of carbonation/phosphate stabilization. Therefore, water-washing/carbonation was considered to be a promising approach to obtain early waste stabilization and to reduce the release of heavy metals to near-negligible levels. The leaching behaviour of elements was also discussed.  相似文献   

11.
The incineration rate of municipal solid waste (MSW) has been increased because of difficulty in securing a proper disposal site for MSW in Korea. The advantage of incineration is reduction of the volume of waste; however, significant amounts of bottom ash and fly ash were generated in the incineration process. Their treatment has attracted growing interest because of the potential toxicity of hazardous heavy metals. Generally, heavy metals are less released from bottom ash than from fly ash. In this study the adsorption characteristics of heavy metals were investigated using various particle sizes of MSWI bottom ash. Since bottom ash has a broad particle size distribution, it was sieved to size classes of +20, -20, -48, -80, -100 mesh. Cation exchange capacity (CEC) was analyzed by the ammonium acetate method to evaluate the potential as an adsorbent. The CEC values and surface areas increase as the range of particle size becomes finer. The adsorption experiment was conducted using synthetic (Cu and Ni) and plating rinse water as a function of reaction time (10-180 min), liquid/solid ratio (2-100) and particle size (+20 to -100 mesh), respectively. The adsorption rate increased with decreasing particle size and with increasing liquid/solid ratio; however, the removal efficiency of Cu was higher than that of Ni. In the case of plating rinse water, the adsorption rate decreased sharply at high liquid/solid ratio, and it showed over 80% of adsorption rates for Cu and Ni at an initial pH of 3.  相似文献   

12.
In Japan the volume of municipal solid waste is reduced by incineration, with fly ash and bottom ash disposed in controlled landfills. The leachability of anions and heavy metal cations, Zn, Cu and Pb, from MSW fly ash and bottom ash at different pHs was examined using batch- and column-leaching tests. The MSW ashes had a high capacity for neutralizing acids. Behaviour during leaching depended on the pH of the solution. For the volumes applied, the leachabilities of MSW fly ash were very similar at pHs from 3 to 6. Due to its amphoteric nature, Pb is leachable at pHs of approximately 10 or more, with leachate concentrations of about 3 and 3-10mg/L for the fly ash and bottom ash, respectively, much higher than for Zn and Cu. Pb concentrations for most leaching solutions were 1 and 3mg/L for the fly ash and bottom ash, respectively. Zn, and Cu leached at low concentrations for solutions of pH 3-6. Na and K ions leached at high concentrations of approximately 5000 mg/L in the first batch leaching test, decreasing to 10mg/L by the fourth leach. Ca and Mg ions leached more gradually than Na and K. Cl(-) and SO(4)(2+) ions were the major anions in the MSW ash. The high pH and cation leaching are expected to have negative impacts on the performance of clay liners.  相似文献   

13.
A test road constructed with municipal solid waste incineration (MSWI) bottom ash was monitored over a period of 36 months. Using chemical and toxicological characterisation, the environmental impact of leachates from bottom ash was evaluated and compared with leachates from gravel used as reference. Initial leaching of Cl, Cu, K, Na, NH4-N and TOC from bottom ash was of major concern. However, the quality of the bottom ash leachate approached that of the gravel leachate with time. Leachates from the two materials were compared regarding the concentration of pollutants using multivariate data analyses (MVDA). A standardized luminescent bacteria assay using Vibrio fischeri did not show any toxicity, most likely because saline contamination can mask the toxic response and stimulate luminescence in these marine bacteria. A mung bean assay using Phaseolus aureus revealed that the toxicity of bottom ash leachate collected at the very beginning of the experimental period (October 2001 and May 2002) might be attributed to the following components and their respective concentrations in mg l(-1): Al (34.2-39.2), Cl (2914-16,446), Cu (0.48-1.92), K (197-847), Na (766-4180), NH4-N (1.80-8.47), total-N (12.0-18.5), and TOC (34.0-99.0). The P. aureus assay was judged as a promising environmental tool in assessing the toxicity of bottom ash leachate.  相似文献   

14.
The leaching behavior of dioxins from landfill containing bottom ash and fly ash from municipal solid waste incineration has been investigated by leaching tests with pure water, non-ionic surfactant solutions, ethanol solutions, or acetic acid solutions as elution solvents for a large-scale cylindrical column packed with ash. Larger amounts of dioxins were eluted from both bottom ash and fly ash with ethanol solution and acetic acid solution than with pure water. Large quantities of dioxins were leached from fly ash but not bottom ash by non-ionic surfactant solutions. The patterns of distribution of the dioxin congeners in the leachates were very similar to those in the bottom ash or fly ash from which they were derived.  相似文献   

15.
By utilising MSW fly ash from the Shanghai Yuqiao municipal solid waste (MSW) incineration plant as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by combining SiO(2), MgO and Al(2)O(3) or bottom ash as conditioner of the chemical compositions and TiO(2) as the nucleation agent. The optimum procedure for the glass-ceramics is as follows: melting at 1500 degrees C for 30 min, nucleating at 730 degrees C for 90 min, and crystallization at 880 degrees C for 10h. It has been shown that the diopside-based glass-ceramics made from MSW fly ash have a strong fixing capacity for heavy metals such as lead (Pb), chromium (Cr), cadmium (Cd) etc.  相似文献   

16.
During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.  相似文献   

17.
In order to manage municipal solid waste incineration (MSWI) bottom ash safely, risk assessments, including the prediction of leaching under different field conditions, are necessary. In this study, the influence of salt or dissolved organic matter (DOM) in the influent on metal leaching from MSWI bottom ash was investigated in a column experiment. The presence of salt (0.1M NaCl) resulted in a small increase of As leaching, whereas no impact on leachate concentration was found when lakewater DOM (35.1mg/l dissolved organic carbon) was added. Most of the added DOM was retained within the material. Further, X-ray spectroscopy revealed that Cu(II) was the dominating form of Cu and that it probably occurred as a CuO-type mineral. The Cu(2+) activity in the MSWI bottom ash leachate was most likely determined by the dissolution of CuO together with the formation of Cu-DOM complexes and possibly also by adsorption to (hydr)oxide minerals. The addition of lake DOM in the influent resulted in lower saturation indices for CuO in the leachates, which may be due to slow CuO dissolution kinetics in combination with strong Cu-DOM complexation.  相似文献   

18.
The fine particle size fraction of municipal solid waste incinerator bottom ash is often problematic because reuse applications for this material are limited. In these experiments incinerator bottom ash with a particle size of less than 8 mm was processed using conventional ceramic production techniques involving wet milling, drying, compacting and sintering. The effect of sintering temperature on the sintered density, microstructure, acid neutralization capacity (ANC) and the release of metal ions as a function of leachate pH are reported. Sintering at 1080 degrees C produced samples with maximum density. This material contained diopside (CaMgSi2O6), clinoenstatite (Mg2Si2O6) and wollastonite (CaSiO3) as the major crystalline phases. The acid neutralization capacity of sintered samples is significantly lower than milled bottom ash, and further reduces as the sintering temperature increases. This is associated with reduced leaching of Ca from sintered ash samples under all leachate pH conditions. Heavy metals present in the incinerator bottom ash included Cr, Cu, Ni, Zn, Cd and Pb. Sintering under optimum conditions reduced the leachable fraction of these metals under aggressive acid conditions (leachate pH 3) by factors ranging from 90% for Ni to greater than 99% for Cr, Cd, Zn and Pb.  相似文献   

19.
A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the “intensive reactor phase”, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called “final storage quality”, will take many centuries to be achieved in a moderate climate.  相似文献   

20.
To evaluate carbonization as a thermal pretreatment method for landfilling, the releasing characteristics of organic and inorganic constituents from carbonization residue derived from shredded residue of bulky waste was investigated by means of batch and column leaching tests. Shredded residue of bulky waste itself and its incineration ash were tested together to compare pretreatment methods. In batch leaching tests at a liquid/solid ratio of 10, the release of organic carbon from carbonization residue was at a remarkably low level. Besides, carbonization contributed to immobilize heavy metals such as chromium, cadmium, and lead within its residue. In column tests, the discharges of organic constituents were lowest from carbonization residue under aerobic conditions due to microbial activity. The leaching of Cd, Cr, Pb, and Cu from carbonization residue was suppressed under anaerobic conditions; however, this suppression effect tended to be weaker under aerobic conditions. From the results showing that the total releasing amounts of organic and inorganic constituents from carbonization residue are so low as to be comparable to that of incineration ash, carbonization can be considered as one of the thermal pretreatment methods of organic wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号