首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.  相似文献   

2.
Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420 °C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440 °C.  相似文献   

3.
An attempted has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35–40%), acetylene (13–20%), ethylene (3–4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg?1 and the concentrations of toxic gases, such as NOx, HCl and HF, were below the regulatory emissions limit. Gas chromatography–mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 μm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.  相似文献   

4.
The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute elevated contaminant levels to e-waste, we do not recommend continued disposal of e-waste in old landfills that were not originally designed to contain leachates. The survey also revealed temporal variation in the electrical conductivity and concentrations of As, Cd and Pb present in leachates of landfills in arid Mediterranean climates. These results are consistent with the marked variations in rainfall patterns observed for such climates. The solute concentration (EC and other ions including As, Cd and Pb) declines in the leachates during wet winter months (June to September), in contrast to tropical countries where such changes are observed during wet summer months.  相似文献   

5.
Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ18PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.  相似文献   

6.
Dioxins like polychlorinated dibenzo-p-dioxins (PCSDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) are mainly emitted from waste incinerators (WIs) and have become an international research focus because of its serious concerns over the adverse health effects. The detoxification of PCCDs/Fs and PCBs is very difficult because of their stable chemical structure. A significant hydrodechlorination/detoxification of polychlorinated 1-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were achieved in fly ash by using an aqueous mixture of calcium hydroxide and sulfur. Two different fly ashes were studied: originating from municipal waste incinerator (FA1) and industrial waste incinerator (FA2). They were heated with the aqueous mixture at 150 °C for 30 or 60 min with agitation. Higher decomposition (87%) and detoxification (87.7%) of PCDD/Fs and PCBs were achieved at 150 °C with two runs; every run was for 30 min, compared to one run for 60 min. FA2 gave higher decomposition and detoxification as compared to FA1, which might be due to higher metal content that played a catalytic role to decompose and detoxify the PCDDs, PCDFs and PCBs. The decomposition and detoxification of PCDFs in fly ash was higher than PCDDs and was augmented with increasing number of chlorides on aromatic compounds. As the highly significant decomposition and detoxification of higher concentration of PCDD/Fs and PCBs were achieved in 1 hour without additive catalyst and at low temperature of 150 °C, therefore, the developed method is cost effective and most suitable to apply on commercial/industrial level. The detail results of hydrodechlorination/detoxification of PCDD, PCDFs at different conditions are described and its mechanism is discussed.  相似文献   

7.
The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition.In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.  相似文献   

8.
Twenty four waste cellular phones, manufactured between 2002 and 2011, were selected in order to determine the total heavy metal content in each of their parts (printed circuit boards (PCBs), plastic housing (PH) and liquid crystal display monitors (LCDs)) and compare the results with the permissible limits set by the 2003 Directive on Restriction of Hazardous Substances (RoHS). All the selected samples were pulverized and digested with strong acids. Inductively coupled plasma-mass spectrometry was used to measure the heavy metal content in each sample. The results revealed that concentration levels of the examined heavy metals were higher in PCBs, followed by PH and LCD in that particular order (PCB > PH > LCD). With the exception of Pb and Cr present in PCBs of mobile phones released before the year 2006, all the other metal concentrations were according to the Directive. Concentration levels of Cd, Hg were lower than the permissible limits set by the EU, either before or after the validity of the 2003 RoHS Directive. Considering their significant heavy metal content, coupled with their large quantities produced worldwide in an annual rate, waste cellular phones need to be treated under an environmentally sound management scheme, prioritizing recycling and at the same time eliminating the possibility of any harm.  相似文献   

9.
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining.  相似文献   

10.
The influence of pH on the leaching behaviour of air pollution control (APC) residues produced in municipal solid waste incineration (MSWI) is addressed in this study. The residue is considered hazardous waste, and in accordance with their chemical properties, the leaching of contaminants into the environment is the main concern. Several leaching tests can be used for research studies or regulatory purposes, where a wide variety of conditions may be tested. Our work deals mainly with the leaching behaviour of toxic heavy metals (Pb, Cd, Zn, Cr, Ni, Cu) and inorganics associated with soluble salts (Na, K, Ca, Cl). The main goal is to obtain an overview of the leachability of APC residues produced in a Portuguese MSWI process. Among the different variables that may have influence on the leaching behaviour, pH of the leachant solution is the most important one, and was evaluated through pH static tests. The acid neutralization capacity (ANC) of the residue was also determined, which is in the range of 6.2–6.8 meq g?1 (for pH = 7) and 10.1–11.6 meq g?1 (for pH = 4). The analysis of the leaching behaviour is particularly important when the leaching is solubility controlled. The amphoteric behaviour of some elements was observed, namely for Pb and Zn, which is characterized through high solubilization at low and high pH and moderate or low solubility at neutral or moderate high pH. The solubility curves for Pb, Cd, Zn, Cr, Ni and Cu as a function of pH were obtained, which are very useful for predicting the leaching behaviour in different scenarios. The solubility of K and Na reveals to be nearly independent of the solution pH and the released amount is mainly availability-controlled. Moreover, the pH static test showed that Cl? is the most pH-independent species. The APC residue turns out to be a hazardous waste because of the high leaching of lead and chloride. On the other hand, leaching of elements like cadmium, nickel and copper is limited by the high pH of the residue, and as long as the waste keeps its ANC, the risk of mobilization of these elements is low.  相似文献   

11.
This study refers to two chemical leaching systems for the base and precious metals extraction from waste printed circuit boards (WPCBs); sulfuric acid with hydrogen peroxide have been used for the first group of metals, meantime thiourea with the ferric ion in sulfuric acid medium were employed for the second one. The cementation process with zinc, copper and iron metal powders was attempted for solutions purification. The effects of hydrogen peroxide volume in rapport with sulfuric acid concentration and temperature were evaluated for oxidative leaching process. 2 M H2SO4 (98% w/v), 5% H2O2, 25 °C, 1/10 S/L ratio and 200 rpm were founded as optimal conditions for Cu extraction. Thiourea acid leaching process, performed on the solid filtrate obtained after three oxidative leaching steps, was carried out with 20 g/L of CS(NH2)2, 6 g/L of Fe3+, 0.5 M H2SO4, The cross-leaching method was applied by reusing of thiourea liquid suspension and immersing 5 g/L of this reagent for each other experiment material of leaching. This procedure has lead to the doubling and, respectively, tripling, of gold and silver concentrations into solution. These results reveal a very efficient, promising and environmental friendly method for WPCBs processing.  相似文献   

12.
The present lab-scale experimental study presents the process of leaching waste printed circuit boards (WPCBs) in order to recover gold by thioureation. Preliminary tests have shown that copper adversely affects gold extraction; therefore an oxidative leaching pre-treatment was performed in order to remove base metals. The effects of sulfuric acid concentration, hydrogen peroxide volume and temperature on the metal extraction yield were studied by analysis of variance (ANOVA). The highest copper extraction yields were 76.12% for sample A and 18.29% for sample D, after leaching with 2 M H2SO4, 20 ml of 30% H2O2 at 30 °C for 3 h. In order to improve Cu removal, a second leaching was performed only on sample A, resulting in a Cu extraction yield of 90%. Other experiments have shown the negative effect of the stirring rate on copper dissolution. The conditions used for the process of gold extraction by thiourea were: 20 g/L thiourea, 6 g/L ferric ion, 10 g/L sulfuric acid, 600 rpm stirring rate. To study the influence of temperature and particle size, this process was tested on pins manually removed from computer central processing units (CPUs) and on waste CPU for 3½ h. A gold extraction yield of 69% was obtained after 75% of Cu was removed by a double oxidative leaching treatment of WPCBs with particle sizes smaller than 2 mm.  相似文献   

13.
A novel hydrometallurgical process was proposed for selective recovery of Cu, Ag, Au and Pd from waste printed circuit boards (PCBs). More than 99% of copper content was dissolved by using two consecutive sulfuric acid leaching steps in the presence of H2O2 as oxidizing agents. The solid residue of 2nd leaching step was treated by acidic thiourea in the presence of ferric iron as oxidizing agent and 85.76% Au and 71.36% Ag dissolution was achieved. The precipitation of Au and Ag from acidic thiourea leachate was investigated by using different amounts of sodium borohydride (SBH) as a reducing agent. The leaching of Pd and remained gold from the solid reside of 3rd leaching step was performed in NaClO-HCl-H2O2 leaching system and the effect of different parameters was investigated. The leaching of Pd and specially Au increased by increasing the NaClO concentration up to 10 V% and any further increasing the NaClO concentration has a negligible effect. The leaching of Pd and Au increased by increasing the HCl concentration from 2.5 to 5 M. The leaching of Pd and Au were endothermic and raising the temperature had a positive effect on leaching efficiency. The kinetics of Pd leaching was quite fast and after 30 min complete leaching of Pd was achieved, while the leaching of Au need a longer contact time. The best conditions for leaching of Pd and Au in NaClO-HCl-H2O2 leaching system were determined to be 5 M HCl, 1 V% H2O2, 10 V% NaClO at 336 K for 3 h with a solid/liquid ratio of 1/10. 100% of Pd and Au of what was in the chloride leachate were precipitated by using 2 g/L SBH. Finally, a process flow sheet for the recovery of Cu, Ag, Au and Pd from PCB was proposed.  相似文献   

14.
A new strain, Pseudomonas Chlororaphis (PC), was found for dissolving gold, silver, and copper from the metallic particles of crushed waste printed circuit boards (PCBs). The optimized conditions that greatly improved the ability of producing CN? (for dissolving metals) were obtained. Dissolving experiments of pure gold, silver, and copper showed that the metals could be changed into Au+, Ag+, and Cu2+. PC cells and their secreta would adsorb metallic ions. Meanwhile, metallic ions destroyed the growth of PC. Dissolving experiments of metallic particles from crushed waste PCBs were performed by PC. The results indicated that 8.2% of the gold, 12.1% silver, and 52.3% copper were dissolved into solution. This paper contributed significance information to recovering precious metals from waste PCBs by bioleaching.  相似文献   

15.
In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m3/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters.The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37 °C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge.  相似文献   

16.
Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO3were made. The leaching of Au and Ag with alternative reagents: Na2S2O3, and (NH4)2S2O3 in 0.1 M concentration with the addition of CuSO4, NH4OH, and H2O2, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO4 was added.  相似文献   

17.
The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR (27Al and 29Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.  相似文献   

18.
A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO2-eq. generated in the incineration process, and 54 kg CO2-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO2-eq. Savings from energy recovery are in the range of 67 to 752 kg CO2-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO2-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.  相似文献   

19.
Uncontrolled deposition of waste from animal farms is a common practice in south-western Nigeria, and the presence of heavy metals in soil constitutes environmental and health hazards by polluting the soil, ground water, adjoining streams and rivers. The study investigated the profile distribution of Mn, Pb, Cd, Zn, Fe, Cu, Ni and Cr in some tropical Alfisols in south-western Nigeria after nine years disposal of animal wastes. The amount of these metals in the soil horizons was high enough to cause health and phytotoxic risks. All the metals except Zn and Cr increased down the profile, while Mn, Pb, Cd, Fe, Cu and Ni accumulated at 80–120 cm depth. The increment of these metals at this depth over the top soil were 26%, 143%, 72%, 47%, 328% for Mn, Pb, Cd, Cu and Ni, respectively. It thus, shows their mobility and the possibility of polluting ground water. The Mn content at the poultry and cattle waste sites increased by 127% and 25%, respectively over the control, while that of cattle and swine dump site for Cd content were 9.82 and 15.63 mg kg?1, respectively. Lead content also increased by 8.52 and 5.25 mg kg?1, respectively.There was the accumulation of Zn and Cu at the swine dump site while the cattle dump site had the highest amounts of nickel and chromium. The least amount of Fe was recorded at the swine waste dump site. The reduction in organic matter with depths together with the reduced pH might have favored the mobility of the metals. The ranking of pollution among the sites was poultry > swine > cattle > sheep and could be due to the type of ration fed, the vaccination programmes, sanitation programmes and other management practices.  相似文献   

20.
With reference to the European regulation about the management of End-of-Life Vehicles (ELVs), Directive 2000/53/EC imposes the achievement of a recycling target of 85%, and 95% of total recovery by 2015. Over the last few years many efforts have been made to find solutions to properly manage the waste coming from ELVs with the aim of complying with the targets fixed by the Directive.This paper focuses on the economical evaluation of a treatment process, that includes physical (size and density), magnetic and electrical separations, performed on the light fraction of the automobile shredder residue (ASR) with the aim of reducing the amount of waste to dispose of in a landfill and enhancing the recovery of valuable fractions as stated by the EU Directive. The afore mentioned process is able to enhance the recovery of ferrous and non-ferrous metals of an amount equal to about 1% b.w. (by weight) of the ELV weight, and to separate a high energetic-content product suitable for thermal valorization for an amount close to (but not higher than) 10% b.w. of the ELV weight.The results of the economical assessment led to annual operating costs of the treatment ranging from 300,000 €/y to 350,000 €/y. Since the considered plant treats about 13,500 metric tons of ASR per year, this would correspond to an operating cost of approximately 20–25 €/t. Taking into account the amount and the selling price of the scrap iron and of the non magnetic metal recovered by the process, thus leading to a gain of about 30 €/t per ton of light ASR treated, the cost of the recovery process is balanced by the profit from the selling of the recovered metals. On the other hand, the proposed treatment is able to achieve the fulfillment of the targets stated by Directive 2000/53/EC concerning thermal valorization and reduce the amount of waste generated from ELV shredding to landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号