首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition.In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.  相似文献   

2.
Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be ‘dehalogenating prior to pyrolysing plastics’, ‘performing dehalogenation and pyrolysis at the same time’ or ‘pyrolysing plastics first then upgrading pyrolysis oils’. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process.  相似文献   

3.
Recycling of WEEE plastics: a review   总被引:1,自引:0,他引:1  
Electric and electronic equipment (EEE) is swiftly growing in volume, level of sophistication, and diversity. Also, it evolves briskly, moved by innovation and technical change, and draws on numerous and at times rare resources. Waste EEE (WEEE) has evolved into an important societal problem. Recycling and treating WEEE implies occupational as well as environmental hazards that are still incompletely documented. Still, second hand EEE has been exported and treated in Africa, China, and India in a precarious informal context. In developed countries, EEE recycling has been sustained by a wide range of initiatives and motives, such as sustainability, creating jobs, and the value of precious or rare metals. Current EU Directives require a steep reduction of WEEE plastics (WEEP) going to landfill. Mechanical, thermal, and feedstock recycling of WEEP are analysed and some options confronted. Plastics recycling should be weighed against the eventual risks related to their hazardous ingredients, mainly legacy brominated fire retardants and heavy metals. Another paper is related to a somewhat similar problem, yet involving a different mix of plastics: recycling plastics from automotive shredder residue.  相似文献   

4.
As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.  相似文献   

5.
In view of the environmental problem involved in the management of WEEE, and then in the recycling of post-consumer plastic of WEEE there is a pressing need for rapid measurement technologies for simple identification of the various commercial plastic materials and of the several contaminants, to improve the recycling of such wastes.This research is focused on the characterization and recycling of two types of plastics, namely plastic from personal computer (grey plastic) and plastic from television (black plastic). Various analytical techniques were used to monitor the compositions of WEEE. Initially, the chemical structure of each plastic material was identified by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Polymeric contaminants of these plastics, in particular brominated flame retardants (BFRs) were detected in grey plastics only using different techniques. These techniques are useful for a rapid, correct and economics identification of a large volumes of WEEE plastics.  相似文献   

6.
In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.  相似文献   

7.
Incineration has undergone several technology improvements, reducing air emissions and increasing the efficiency of energy and material recovery; however, there is still a long way to go. To analyze the environmental impacts of waste incineration, this study assessed 15 waste fractions that compose municipal waste in Spain, which are grouped as non-inert materials (plastics, paper, cardboard and organic matter), unburned materials (glass and Al) and ferrous materials. Additionally, this paper evaluates the valorization of bottom ash (BA) to produce steel, aluminum and cement in these recycled/recoverable waste fractions. The results depend on the input waste composition and the heating value (HHV) and showed that ferrous and unburned materials had the worst environmental performance due to the null HHV. The valorization of BA in steel, Al and cement production significantly reduced the environmental impact and the consumption of resources. BA recycling for secondary steel and Al production would improve the environmental performance of the combustion of unburned materials and ferrous materials, whereas the use of BA in cement production diminished the consumption of NR for non-inert materials. This is of great interest for organic matter and PC, waste with a low energy production and high heavy metal and sulfur content.  相似文献   

8.
Dehalogenation is a key technology in the feedstock recycling of mixed halogenated waste plastics. In this study, two different methods were used to clarify the effectiveness of our proposed catalytic dehalogenation process using various carbon composites of iron oxides and calcium carbonate as the catalyst/sorbent. The first approach (a two-step process) was to develop a process for the thermal degradation of mixed halogenated waste plastics, and also develop dehalogenation catalysts for the catalytic dehydrochlorination of organic chlorine compounds from mixed plastic-derived oil containing polyvinyl chloride (PVC) using a fixed-bed flow-type reactor. The second approach (a single-step process) was the simultaneous degradation and dehalogenation of chlorinated (PVC) and brominated (plastic containing brominated flame retardant, HIPS–Br) mixed plastics into halogen-free liquid products. We report on a catalytic dehalogenation process for the chlorinated and brominated organic compounds formed by the pyrolysis of PVC and brominated flame retardant (HIPS–Br) mixed waste plastics [(polyethylene (PE), polypropylene (PP), and polystyrene (PS)], and also other plastics. During dehydrohalogenation, the iron- and calcium-based catalysts were transformed into their corresponding halides, which are also very active in the dehydrohalogenation of organic halogenated compounds. The halogen-free plastic-derived oil (PDO) can be used as a fuel oil or feedstock in refineries.  相似文献   

9.
This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.  相似文献   

10.
In Korea, generation of waste electrical and electronic equipment (WEEE), or electronic waste (e-waste), has rapidly increased in recent years. The management of WEEE has become a major issue of concern for solid waste communities due to the volumes of waste being generated and the potential environmental impacts associated with the toxic chemicals found in most electronic devices. Special attention must be paid when dealing with WEEE because of toxic materials that it contains (e.g., heavy metals, polybrominated diphenyl ethers, phthalates, and polyvinyl chloride). If managed improperly, the disposal of WEEE can adversely affect the environment and human health. Environmental regulatory agencies; electronic equipment manufacturers, retailers, and recyclers; environmental nongovernmental organizations; and many others are much interested in updated statistics with regard to how much WEEE is generated, stored, recycled, and disposed of. In Korea, an extended producer responsibility policy was introduced in 2003 not only to reduce the amount of electronic products requiring disposal, but also to promote resource recovery from WEEE; the policy currently applies to a total of ten electrical and electronic product categories. This article presents an overview of the current recycling practices and management of electrical and electronic waste in Korea. Specifically, the generation rates, recycling systems and processes, and recent regulations of WEEE are discussed. We estimated that 1 263 000 refrigerators, 701 000 washing machines, 1 181 000 televisions, and 109 000 airconditioning units were retired and handled by the WEEE management system in 2006. More than 40% of the products were collected and recycled by producers. Four major producers’ recycling centers and other WEEE recycling facilities are currently in operation, and these process a large faction of WEEE for the recovery of valuable materials. Much attention should still be paid to pollution prevention and resource conservation with respect to WEEE. Several suggestions are made in order to deal with electronic waste management problems effectively and to prevent potential impacts.  相似文献   

11.
Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20 mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink–float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC–ABS, PS and rest product. The fractions were characterised by using the methodology described in this paper. The results show that the grade and liberation degree of the plastic products ABS, PC–ABS and PS are close to 100%. Sink–float separation and infrared plastic identification equipment confirms the high plastic quality. On the basis of these findings, a global separation flow sheet is proposed to improve the plastic separation of WEEE.  相似文献   

12.
The chemical composition of waste of small electrical and electronic equipment (s-WEEE), a rapidly growing waste stream, was determined for selected metals (Cu, Sb, Hg etc.) and non-metals (Cl, Br, P) and PCBs. During a 3-day experiment, all output products and the s-WEEE input mass flows in a WEEE recycling plant were measured. Only output products were sampled and analyzed. Material balances were established, applying substance flow analysis (SFA). Transfer coefficients for the selected substances were also determined. The results demonstrate the capability of SFA to determine the composition of the highly heterogeneous WEEE for most substances with rather low uncertainty (2 sigma +/- 30%). The results confirm the growing importance of s-WEEE regarding secondary resource metals and potential toxic substances. Nowadays, the thirty times smaller s-WEEE turns over larger flows for many substances, compared to municipal solid waste. Transfer coefficient results serve to evaluate the separation efficiency of the recycling process and confirm--with the exception of PCB and Hg--the limitation of hand-sorting and mechanical processing to separate pollutants (Cd, Pb, etc.) out of reusable fractions. Regularly applied SFA would serve to assess the efficacy of legislative, organizational and technical measures on the WEEE.  相似文献   

13.
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO2e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.  相似文献   

14.
15.
Data for the composition of municipal solid waste (MSW) from around the world are used to further examine a previously reported statistical correlation between the fraction of food residues and the fractions of paper and board, metal, glass and plastics residues in MSW. For data from many locations, these correlations are statistically significant; multiple linear regressions are computed. The fraction of food waste decreases as the fractions of waste from paper and board, metals and glass increase.The situation in the U.S.A. is examined further for just packaging waste. Similar correlations are established for the fraction of food residues and the fractions of paper and board and plastics packaging residues for predicted compositions for 1980 to 2000. Similar correlations for the U.K. are not statistically significant. Some reasons for this are postulated.The results of the statistical analyses predict that a strategy for decreasing the fraction of food waste in MSW is to increase the use of food packaging by some amount, especially plastics and metals, contrary to conventional wisdom.  相似文献   

16.
The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n = 51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n = 161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.  相似文献   

17.
Waste from electrical and electronic equipment (WEEE) constitutes one of the most complicated solid waste streams in terms of its composition, and, as a result, it is difficult to be effectively managed. In view of the environmental problems derived from WEEE management, many countries have established national legislation to improve the reuse, recycling and other forms of recovery of this waste stream so as to apply suitable management schemes. In this work, alternative systems are examined for the WEEE management in Cyprus. These systems are evaluated by developing and applying the Multi-Criteria Decision Making (MCDM) method PROMETHEE. In particular, through this MCDM method, 12 alternative management systems were compared and ranked according to their performance and efficiency. The obtained results show that the management schemes/systems based on partial disassembly are the most suitable for implementation in Cyprus. More specifically, the optimum scenario/system that can be implemented in Cyprus is that of partial disassembly and forwarding of recyclable materials to the native existing market and disposal of the residues at landfill sites.  相似文献   

18.
The consumption of electrical and electronic equipment is surging, so is the generation of waste electrical and electronic equipment (WEEE). Due to the large quantity, high potential risk and valuable capacity of WEEE, many countries are taking measures to regulate the management of WEEE. The environmental pollution and human health-harming problems caused by irregular treatment of WEEE in China make the government pay more and more attention to its management. This paper reviews the development of WEEE management in China, introduces the new policy which is established for WEEE recycling and especially analyzes the effectiveness of the policy, including huge recovery, formation of new recycling system, strict supervision to related enterprises, and the stimulation to public awareness. Based on the current achievement, some recommendations are given to optimize the WEEE management in China.  相似文献   

19.
Municipal solid waste management (MSWM) constitutes one of the most crucial health and environmental problems facing authorities in the Arabian Gulf. Recent literature on current solid waste management (SWM) in Qatar has been reviewed in this paper, and a focused study has been carried out to provide a review on the total amount of municipal solid waste generated, stored, collected, disposed as well as the constituents of the waste. The analysis showed that Qatar produced around 2,000,000 tons of solid municipal waste annually, corresponding to a daily generation rate per capita of about 2.5 kg. About 60% of MSW is organic material and about 300 kg is composed daily. Landfill and composting is considered the most appropriate waste disposal techniques in Qatar. Um-Al-Afai landfill has nearly 80% of MSW. Because of the increased migration in Qatar, there is a sharp rise in the volume and also in the variety of solid waste. It is important to alleviate societal concerns over the increased rate of resource consumption and waste production; thus, policy makers have encouraged recycling and reuse strategies to reduce the demand for raw materials and to decrease the quantity of waste going to landfill. An example of the benefit of mechanical recycling of plastics compared to land filling and composting was conducted by GaBi 4 life cycle analysis tool which showed the benefits to the global warming and human toxicity. Recycling is the favored solution for plastic waste management, because it has a lower environmental impact on the defined impact categories, from Global Warming Potential (GWP) and Human Toxicity Potentials (HTP) indicators.  相似文献   

20.
The influence of socioeconomic factors, such as population and rapid economic growth, and the change of consumption and living patterns make waste management in Singapore, a complex issue. Due to limited land and resources, the solid waste management scheme requires a comprehensive approach. Therefore, system dynamics (SD) modeling was applied to assess alternative strategies for solid waste management by interconnecting landfill capacity and recycling efficiency with reference to the projection on waste generation. Nine different scenarios were investigated to identify the best approach to maintain environmental sustainability without inhibiting the economic growth. Four subsystems (i.e., population, economy, waste recycling, and waste disposal) have been incorporated into the SD model to broaden the effectiveness of the waste management system. Research findings revealed that a high economic pattern and a high recycling rate are recommended to satisfy the requirements for economic growth and environmental sustainability while extending landfill capacity for waste disposal. Even though the balance of expenditure could be increased by the high recycling rate, it meets the need for long-term incineration and landfill planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号