首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fertilizer leaching affects farm profitability and contributes to nonpoint-source pollution of receiving waters. This work aimed to establish nitrate nitrogen export from La Violada Gully in relation to nitrogen fertilization practices in its basin (La Violada Gully watershed, VGW, 19,637 ha) and especially in La Violada Irrigation District (VID, 5282 ha). Nitrogen (N) fertilization in VID (and VGW) was determined through interviews with local farmers for the hydrologic years 1995 and 1996 and NO3-N load in the gully was monitored from 1995 to 1998. The N fertilizer applied in VGW was 2175 Mg in 1995 and 2795 Mg in 1996. About 43% was applied in VID (945 Mg in 1995 and 1161 Mg in 1996). The most fertilized crop was corn: 398 kg N ha-1 (665 Mg) in 1995 and 453 kg N ha-1 (911 Mg) in 1996. Nitrogen fertilization was higher than N uptake for irrigated crops, especially for corn and rice. Nitrate N load in La Violada Gully averaged 427.4 Mg yr-1. Seventy-five percent of the exports took place during the irrigation season (321.8 Mg). During the non-irrigation season maximum NO3-N loads (3.1 Mg NO3-N d-1) were found after heavy rains following the N side-dressing of wheat in the rain-fed area of VGW (February). During the irrigation season NO3-N load was determined by outflow from the district (caused by irrigation) and to a lesser extent by changes in NO3 concentration (caused by fertilization), showing peaks in April (pre-sowing corn N fertilization and first irrigations) and June to August (highest irrigation months and corn side-dress N applications, maximum 6.3 Mg NO3-N d-1 in July). Adjusting N fertilization to crops' needs, improving irrigation efficiencies, and better scheduling N fertilization and irrigation in corn could reduce N export from VID.  相似文献   

2.
ABSTRACT: The salinity of the lower South Platte River in Colorado is characterized by plotting the average annual flow, total dissolved solids, and salt mass flow against distance along the stream. The plots show that salts are being leached from the irrigated lands above Greeley and are being deposited on the irrigated lands below Greeley. The salt deposition on the lower lands will result in their salination. The plots show also that fall and winter stream flows carry most of the salt loads. These fall and winter flows are stored in off stream reservoirs for use during the irrigation season. Therefore these salts are transferred to the lower irrigated lands where they accumulate. The salt balance for these lands can be improved by permitting the fall and winter flows to leave the basin, or by providing adequate land drainage coupled with supplemental irrigation water.  相似文献   

3.
ABSTRACT: Best management practices for irrigated agriculture are not restricted to the control of sediments in the return flow. Salts and nutrient loading and oxygen depletion are also of environmental concern. Since knowledge of waste loading returned from agricultural irrigation is limited, specific characterization of irrigatin and runoff water quality should precede corrective measures. In 1974, 1975 and 1976, four study sites with in a 50,000-acre irrigated area were monitored to characterize the quantity and quality of irrigation water and surface return flow. Simple correlatins among constituents showed strong relationships among BOD, TP, PO4,-P, and No3-N. Least significant difference tests among seasonal means of change-in-load per irrigation showed that only TDS and PO4-P were significant.  相似文献   

4.
Agricultural production in the state of Alabama, USA, is mostly rain-fed, because of which it is vulnerable to drought during growing season. Since Alabama receives a significant portion of its annual precipitation during winter months, the goal of this study was to evaluate the feasibility of water withdrawal from streams during winter months for irrigation in the growing season. The Soil and Water Assessment Tool (SWAT) was used to estimate the quantity of water that can be sustainably withdrawn from streams during winter high flow periods. The model was successfully calibrated and validated for surface runoff, base flow, and total stream flow. The stream flows generated by the model at several locations within the watershed were then used to examine how much water can be sustainably withdrawn from streams of various orders (first, second and third). Although there was a considerable year-to-year variability in the amount of water that can be withdrawn, a 16-year average showed that first, second, and third order streams can irrigate about 11.6, 10.3, and 10.6% of their drainage areas, respectively. The percentage of drainage area that can be irrigated was not a function of stream order.  相似文献   

5.
Abstract: Analyses of major elements, environmental isotope ratios (δ18O, δ2H), and PHREEQC inverse modeling investigations were conducted to understand the processes controlling the salinization of groundwater within the Datong Basin. The hydrochemical results showed that groundwater with high total dissolved solid (TDS) concentrations was dominated by sodium bicarbonate (Na‐HCO3), sodium chlorite (Na‐Cl), and sodium sulfate (Na‐SO4) type waters, whereas low‐TDS groundwater from near mountain areas was dominated by calcium bicarbonate (Ca‐HCO3) and magnesium bicarbonate (Mg‐HCO3) type waters. The characterization of the major components of groundwater and PHREEQC inverse modeling indicated that the aluminosilicate hydrolysis, cation exchange, and dissolution of evaporites (halite, mirabilite, and gypsum) governed the salinization of groundwater within the Datong Basin. The environmental isotope (δ18O, δ2H) and Cl?/Br? ratios revealed the impact of fast vertical recharge by irrigation returns and salt‐flushing water on the groundwater salinization. According to the analyses of major hydrochemical components and PHREEQC inverse modeling, evaporite dissolution associated with irrigation and salt‐flushing practice was probably the dominant controlling factor for the groundwater salinization, especially in the central part of the basin. Therefore, groundwater pumping for irrigation and salt‐flushing should be controlled to protect groundwater quality in this area.  相似文献   

6.
Subsurface tile drain flows can be a major s ource of nurient loss from agricultural landscapes. This study quantifies flows and nitrogen and phosphorus yields from tile drains at three intensively grazed dairy pasture sites over 3- to 5-yr periods and evaluates the capacity of constructed wetlands occupying 0.66 to 1.6% of the drained catchments too reduce nutrient loads. Continuous flow records are combined with automated flow-proportional sampling of nutrient concentrations to calculate tile drain nutrient yields and wetland mass removal rates. Annual drainage water yields rangedfrom 193 to 564 mm (16-51% of rainfall) at two rain-fed sites and from 827 to 853 mm (43-51% of rainfall + irrigation) at an irrigated site. Annually, the tile drains exported 14 to 109 kg ha(-1) of total N (TN), of which 58 to 90% was nitrate-N. Constructed wetlands intercepting these flows removed 30 to 369 gTN m(-2) (7-63%) of influent loadings annually. Seasonal percentage nitrate-N and TN removal were negatively associated with wetland N mass loadings. Wetland P removal was poor in all wetlands, with 12 to 115% more total P exported annually overall than received. Annually, the tile drains exported 0.12 to 1.38 kg ha of total P, of which 15 to 93% was dissolved reactive P. Additional measures are required to reduce these losses or provide supplementary P removal. Wetland N removal performance could be improved by modifying drainage systems to release flows more gradually and improving irrigation practices to reduce drainage losses.  相似文献   

7.
Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.  相似文献   

8.
ABSTRACT: Suspended sediment samples were collected in west-side tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochiorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochiorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chiordane. Dissolved samples were analyzed for three organochiorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamfiow were greater during the winter storm runoff - median concentration of 3,590 mg/L versus 489 mg(L and median streamfiow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochiorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.  相似文献   

9.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

10.
Soil and water resources can be severely degraded by salinity when total salt input exceeds output in irrigated agriculture. This study was conducted to examine partitioning of Ca2+, Na+, and Cl- between soil and soybean [Glycine max (L.) Merr.] plants under different irrigation regimes with both field and modeling assessments. In drip and sprinkler treatments, the irrigation water was salinized with NaCl and CaCl2 salts to simulate a Cl- and Na+ dominant saline drainage water. In the furrow irrigation treatment, the soil was salinized, prior to planting, with NaCl and CaCl2 salts to simulate a Cl- and Na+ dominant saline soil. A total of 756 soil and 864 plant samples were collected and analyzed for the salt ions to obtain ion partitioning and mass balance assessments. Modeling of salt ion uptake by plants and distribution in the soil profile was performed with a two-dimensional solute transport model for the three irrigation regimes. Results indicated that about 20% of the applied Ca2+ was recovered in harvested soybean biomass in all treatments. Plant uptake of either Na+ or Cl- was less than 0.5% in the drip and furrow, and about 2% in the sprinkler irrigation treatment. Significant increases in soil salinity were found in the sprinkler plot that received the highest cumulative amount of salts. Simulated ion distributions in the soil were comparable with the measurements. Compared with the total seasonal salt input, mass balances between 65 and 108% were obtained. Most salt inputs accumulate in the soil, and need to be removed periodically to prevent soil salinization.  相似文献   

11.
Schiff, Kenneth C. and Liesl L. Tiefenthaler, 2011. Seasonal Flushing of Pollutant Concentrations and Loads in Urban Stormwater. Journal of the American Water Resources Association (JAWRA) 47(1):136‐142. DOI: 10.1111/j.1752‐1688.2010.00497.x Abstract: Despite broad observations of first flush within storms, the scientific understanding of seasonal flushing remains incomplete. Seasonal flushing occurs when initial storms of the season have greater concentrations or loads than storms later in the season. The goal of this study was to census stormwater concentrations and loads from an arid, urban watershed to quantify seasonal flushing. Samples were collected every 15 min during the 1997‐1998 wet season from the Santa Ana River and analyzed for total suspended solids. Initial storms of the season generated event mean concentrations 3‐10 times the event mean concentration of storms later in the season. Cumulative flow‐weighted mean concentrations were calculated as the season progressed. Early season storms discharged only 6% of the annual volume, but influenced flow‐weighted mean concentrations well past the midpoint of the wet season. Mass‐based estimates also indicated a disproportionate load in the early portion of the year; over 52% of the annual load was discharged in the first 30% of the annual volume from the highly urbanized lower watershed. Other stormwater pollutants, including six trace metals (Cd, Cr, Cu, Pb, Ni, Zn), were highly correlated with total suspended solids and also exhibited a significant seasonal flush.  相似文献   

12.
Internal cycling of nutrients from the sediment and water column can be an important contribution to the total nutrient load of an aquatic ecosystem. Our objective was to estimate the internal nutrient loading of the Lower St. Johns River (LSJR). Dissolved reactive phosphorus (DRP) and ammonium (NH(4)-N) flux from sediments were measured under aerobic and anaerobic water column conditions using intact cores, to estimate the overall contribution of the sediments to P and N loading to the LSJR. The DRP flux under aerobic water column conditions averaged 0.13 mg m(-2) d(-1), approximately 37 times lower than that under anaerobic conditions (4.77 mg m(-2) d(-1)). The average NH(4)-N released from the anaerobic cores (18.03 mg m(-2) d(-1)) was also significantly greater than in the aerobic cores for all sites and seasons, indicating the strong relationship between nutrient fluxes and oxygen availability in the water column. The mean annual internal DRP load was estimated to be 330 metric tons (Mg) yr(-1), 21% of the total P load to the river, while the mean annual internal load of NH(4)-N was determined to be 2066 Mg yr(-1), 28% of the total N load to the LSJR estuary. As water resource managers reduce external loading to the LSJR the frequency of anaerobic events should decline, thereby reducing nutrient fluxes from the sediment to the water column, reducing the internal loading of DRP and NH(4)-N. Results from this study demonstrate that the internal flux of nutrients from sediments may be a significant portion of the total load and should be accounted for in the total nutrient budget of the river for successful restoration.  相似文献   

13.
Water reuse and pollutant removal efficiency analysis of the on-farm irrigation tanks (OFTs) was carried out in rice paddy field region of Zhanghe Irrigation District, Southern China through field experiments during the rice growing season of 2009–2011. Water flow measurements indicate that 20.6–68.9% of drainage water captured by OFTs was reused for supplemental irrigation. Rainfall was the most important factor that determines the water reuse efficiency (WRR) of OFTs, since higher rainfall resulted in higher surplus irrigation water draining out of OFTs without reuse, and thus decreased WRR. Fully using the storage capacity for storing return flow, and releasing totally for supplemental irrigation also enhanced WRR of OFTs. Water quality analysis shows that OFTs removed 47.2% of total phosphorous (TP) and 60.8% of total nitrogen (TN) of inflow and have a great effect on increasing sedimentation for return flow as the mean of removal efficiency of pollutant load (REL) for suspended solids (SS) amounted to 68.4%. For water treatment effectiveness of OFTs, high hydraulic retention time (HRT) is most beneficial to increase REL of TN whereas REL of TP is not sensitive to HRT. These results confirm that OFTs can effectively increase agricultural return flow reuse and remove pollutants. As the cascade OFTs irrigation system recycle return flow for several times, the irrigation water demand from outside of region was reduced significantly for rice production. Coupling with the effect of cyclic irrigation on the nutrients recycling by paddy fields, OFTs irrigation system also considerably mitigate the N and P off-site emission. Therefore, it is advisable to integrate the role of OFTs on water reuse and treatment for water saving irrigation and ecological management of paddy fields landscape.  相似文献   

14.
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins.  相似文献   

15.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

16.
Whitewater river kayaking and river rafting require adequate instream flows that are often adversely affected by upstream water diversions. However, there are very few studies in the USA of the economic value of instream flow to inform environmental managers. This study estimates the economic value of instream flow to non-commercial kayakers derived using a Travel Cost Method recreation demand model and Contingent Valuation Method (CVM), a type of Contingent Behavior Method (CBM). Data were obtained from a visitor survey administered along the Poudre River in Colorado. In the dichotomous choice CVM willingness to pay (WTP) question, visitors were asked if they would still visit the river if the cost of their trip was $Y higher, and the level of $Y was varied across the sample. The CVM yielded an estimate of WTP that was sensitive to flows ranging from $55 per person per day at 300 Cubic Feet per Second (CFS) to a maximum $97 per person per day at flows of 1900 CFS. The recreation demand model estimated a boater’s number of trips per season. We found the number of trips taken was also sensitive to flow, ranging from as little as 1.63 trips at 300 CFS to a maximum number of 14 trips over the season at 1900 CFS. Thus, there is consistency between peak benefits per trip and number of trips, respectively. With an average of about 100 non-commercial boaters per day, the maximum marginal values per acre foot averages about $220. This value exceeds irrigation water values in this area of Colorado.  相似文献   

17.
ABSTRACT: In the Saskatchewan River Basin (365,000 km2), which drains the Canadian prairie from the Rocky Mountains east to Manitoba, concentrations of total solutes are usually within the range of 100 to 1000 mg/L. Total solutes levels in tributaries increase markedly from west to east across the basin, as mountain snowmelt and dilute surface runoff are replaced by ion-rich ground water and concentrated prairie runoff as the major influences on solute concentrations. In contrast, total solutes concentrations in main-stem rivers are nearly constant, ranging 200–300 mg/L, with only a small increase across the basin. Dilute mountain runoff dominates solute concentrations in main-stem rivers, despite the influx of increasingly ion-rich water from tributaries. The principal long-term trends in total solute concentrations across the basin, as revealed by linear and sine-curve regressions, were due to the construction of reservoirs, which depress the natural winter maximum in solute concentrations and disrupt the sinusoidal annual pattern, while sharply reducing seasonal variation. These regression methods did not show anticipated anthropogenic increases in salt load in the Red Deer or South Saskatchewan Rivers, but a trend of slowly increasing solutes concentrations (2 mg/L/yr) was detected for autumn flows in the lower Bow River. Municipal wastes from the City of Calgary or irrigation return flows are probably responsible for this increase.  相似文献   

18.
This paper examines the 1-year anthropogenic stocks and flows of silver as it progresses from extraction to final disposal on the European continent. The primary flows of silver include production, fabrication and manufacturing, use, and waste management. A substance flow analysis (SFA) was used to trace the flows and inventory data, and mass balance equations were used to determine the quantity of flows. The results reveal that Europe has a low level of silver mine production (1580 Mg Ag/year) and instead relies on silver imports and the recycling of scrap in production and fabrication. In the year 1997, Europe imported 1160 Mg Ag of ore concentrate and 2010 Mg Ag of refined silver, and recycled 2750 Mg Ag of new and old scrap. There is a net addition of 3320 Mg Ag/year into silver reservoirs at the use stage. This is the result of a greater amount of silver entering the system from manufacturing than is leaving the system into waste management. The waste flow with the highest content of silver is municipal solid waste, which contains 1180 Mg Ag/year. In total, 62% of all discarded silver is recycled and 38% is sent to landfills. The results of this study and other element and material flow analyses can help guide resource managers, environmental policy makers, and environmental scientists in their efforts to increase material recovery and recycling, address resource sustainability, and ameliorate environmental problems.  相似文献   

19.
The integration of the phosphorus (P) bioavailability concept into a P loading analysis for Cayuga Lake, New York, is documented. Components of the analyses included the: (1) monitoring of particulate P (PP), soluble unreactive P (SUP), and soluble reactive P (SRP), supported by biweekly and runoff event‐based sampling of the lake's four largest tributaries; (2) development of relationships between tributary P concentrations and flow; (3) algal bioavailability assays of PP, SUP, and SRP from primary tributaries and the three largest point sources; and (4) development of P loading estimates to apportion contributions according to individual nonpoint and point sources, and to represent the effects of interannual variations in tributary flows on P loads. Tributary SRP, SUP, and PP are demonstrated to be completely, mostly, and less bioavailable, respectively. The highest mean bioavailability for PP was observed for the stream with the highest agriculture land use. Point source contributions to the total bioavailable P load (BAPL) are minor (5%), reflecting the benefit of reductions from recent treatment upgrades. The BAPL represented only about 26% of the total P load, because of the large contribution of the low bioavailable PP component. Most of BAPL (>70%) is received during high flow intervals. Large interannual variations in tributary flow and coupled BAPL will tend to mask future responses to changes in individual inputs.  相似文献   

20.
ABSTRACT. Salinization and water logging have been the nemesis of irrigated agriculture societies since Babylonian times. Low quality water substitutes for high quality water for irrigation at an increasing rate up to the limits of the soil's ability to transmit the additional water and remove excess salts from the root zone. Soil transmissibility can be increased by additional investment in drainage ditches and underground tile. Low valued-high salt tolerant crops can be substituted for higher valued-salt sensitive crops to maintain production in areas served by irrigation water sources of deteriorating quality. Thus physical factors specify the necessary conditions for survival of an irrigated agriculture. The sufficient conditions for survival must be in terms of a positive net income in each subplanning period discounted to its present value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号