首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
To investigate the forms of Zn and Pb and their plant availability in mine spoil long after its abandonment, we studied seven sites in the Mines of Spain, near Dubuque, IA. Ores of Zn and Pb were mined from dolomitic limestone primarily during the 19th century, and there had been no subsequent remediation of metals-contaminated spoil. From both mine spoil and undisturbed areas, we collected root-zone soil samples as well as samples of the dominant ground-level, native plants, aniseroot [Osmorhiza longistylis (Torr.) DC.] and black snakeroot (Sanicular marilandica L.). We determined Zn and Pb concentrations in both the plant tissue and in the soil samples after strong-acid digestion, and we fractionated the solid-phase forms of Zn, Pb, and P in the soil samples by using sequential extraction. Concentrations of total Zn and Pb were 10- to 20-fold greater in the spoil than in the undisturbed soils. Plants growing in the mine spoil had Zn concentrations two to four times greater and Pb concentrations more than 26 times greater than did plants growing in the undisturbed soils. The highest concentrations of Zn and Pb were in the CBD-extractable and the residual fractions in both undisturbed and mine spoil samples. Although the mine spoil contained large amounts of P, Zn, and Pb were available for uptake by the two plant species in amounts proportional to Zn and Pb concentrations in the rooting zone.  相似文献   

2.
Taxodium distichum (L.) Rich.]. The study site, a swamp in St. Martin Parish, Louisiana, has received municipal wastewater for the last 40 years. Growth chronologies from 1920 to 1992 were developed from cross-dated tree core samples taken from treated and control sites with similar size and age classes. Mean diameter increment (DINC) and mean basal area increment (BAI) chronologies were constructed separately for each stand. These chronologies were then summarized by tree and stand into seven nine-year intervals resulting in three pretreatment intervals from 1926 to 1952 and four treatment intervals from 1953 to 1988. Significant differences in growth response between sites showed a consistent pattern of growth enhancement in the treated site coincident with the onset of effluent discharge. The ratio of treated to control baldcypress growth rates (computed from DINC) averaged 0.74 during the pretreatment period and 1.53 during the treatment period. Over the period of study, control DINC decreased from 77 mm to 29 mm/nine-year interval, while treatment DINC increased slightly from 40 mm to 47 mm/nine-year interval. Control BAI did not increase significantly and averaged 192 cm2/nine-year interval. There was a significant increase in treatment BAI from 129 to 333 cm2/nine-year interval over the period of record. These results clearly demonstrate sustained long-term baldcypress growth enhancement throughout 40 years of municipal effluent discharge.  相似文献   

3.
4.
Modeling hydrology and eutrophication in a Louisiana swamp forest ecosystem   总被引:2,自引:0,他引:2  
The EPA Storm Water Management Model (1971) was used to model hydrodynamics, nutrient dynamics, and eutrophication in a Louisiana swamp forest ecosystem. The present system of canals and spoil banks in the swamp causes impoundment of swamp areas and does not optimize discharge from the swamp forest. Simulations showed that hydraulics could be managed to increase discharge rates to the lower estuary (22 percent), to increase productivity of the swamp forest (100 percent), and to decrease lake eutrophication (43 percent). This could be done by removing spoil banks in the swamp and allowing upland runoff to pass through the backswamp.  相似文献   

5.
Returning canal spoil banks into canals, or backfilling, is used in Louisiana marshes to mitigate damage caused by dredging for oil and gas extraction. We evaluated 33 canals backfilled through July 1984 to assess the success of habitat restoration. We determined restoration success by examining canal depth, vegetation recolonization, and regraded spoil bank soils after backfilling. Restoration success depended on: marsh type, canal location, canal age, marsh soil characteristics, the presence or absence of a plug at the canal mouth, whether mitigation was on- or off-site, and dredge operator performance.Backfilling reduced median canal depth from 2.4 to 1.1 m, restored marsh vegetation on the backfilled spoil bank, but did not restore emergent marsh vegetation in the canal because of the lack of sufficient spoil material to fill the canal and time. Median percentage of cover of marsh vegetation on the canal spoil banks was 51.6%. Median percentage of cover in the canal was 0.7%. The organic matter and water content of spoil bank soils were restored to values intermediate between spoil bank levels and predredging marsh conditions.The average percentage of cover of marsh vegetation on backfilled spoil banks was highest in intermediate marshes (68.6%) and lowest in fresh (34.7%) and salt marshes (33.9%). Average canal depth was greatest in intermediate marshes (1.50 m) and least in fresh marshes (0.85 m). Canals backfilled in the Chenier Plain of western Louisiana were shallower (average depth = 0.61 m) than in the eastern Deltaic Plain (mean depth range = 1.08 to 1.30 m), probably because of differences in sediment type, lower subsidence rate, and lower tidal exchange in the Chenier Plain. Canals backfilled in marshes with more organic soils were deeper, probably as a result of greater loss of spoil volume caused by oxidation of soil organic matter. Canals ten or more years old at the time of backfilling had shallower depths after backfilling. Depths varied widely among canals backfilled within ten years of dredging. Canal size showed no relationship to canal depth or amount of vegetation reestablished. Plugged canals contained more marsh reestablished in the canal and much greater chance of colonization by submerged aquatic vegetation compared with unplugged canals. Dredge operator skill was important in leveling spoil banks to allow vegetation reestablishment. Wide variation in dredge performance led to differing success of vegetation restoration.Complete reestablishment of the vegetation was not a necessary condition for successful restoration. In addition to providing vegetation reestablishment, backfilling canals resulted in shallow water areas with higher habitat value for benthos, fish, and waterfowl than unfilled canals. Spoil bank removal also may help restore water flow patterns over the marsh surface. Increased backfilling for wetland mitigation and restoration is recommended.  相似文献   

6.
对多年利用矿山废水灌溉的水稻土中Pb的化学形态、植物有效态和动物/人有效态进行了分析研究。结果表明,土壤中Pb的碳酸盐结合态、可交换态、有机结合态和Fe-Mn氧化物结合态含量分别是363、338、185和155mg/kg,其总和占总Pb含量的72.70%,表明其较高的环境敏感性;动物/人有效态Pb含量为1085mg/kg。土壤有机态Pb与植物中Pb含量相关性最高,表明用有机态表征土壤Pb的植物有效态比惯常使用的DTPA态要好。植物有效态与动物/人有效态含量相比,前者为后者的17.05%,表明土壤Pb污染对当地动物/人的潜在生态危害远远大于水稻等农作物;Fe-Mn氧化物结合态Pb与植物有效态(即有机结合态)及动物/人有效态Pb相关性最好,表明该形态对土壤Pb的生物有效性具有积极作用。  相似文献   

7.
Livestock manure in feedlots releases ammonia (NH3), which can be sorbed by nearby soil and plants. Ammonia sorption by soil and its effects on soil and perennial grass N contents downwind from two large cattle feedlots in Alberta, Canada were investigated from June to October 2002. Atmospheric NH3 sorption was measured weekly by exposing air-dried soil at sampling points downwind along 1700-m transects. The amount of NH3 sorbed by soil was 2.60 to 3.16 kg N ha(-1) wk(-1) near the source, declining to about 0.25 kg N ha(-1) wk(-1) 1700 m downwind, reflecting diminishing atmospheric NH3 concentrations. Ammonia sorption at a control site away from NH3 sources was much lower: 0.085 kg N ha(-1) wk(-1). Based on these rates, about 19% of emitted NH3 is sorbed by soil within 1700 m downwind of feedlots. Field soil and grass samples from the transect lines were analyzed for total N (TN) and KCl-extractable N content (soil only). Nitrate N content in field soil followed a trend similar to that of atmospheric NH3 sorption. Soil TN contents, because of high background levels, showed no clear pattern. The TN content of grass, downwind of the newer feedlot, followed a pattern similar to that of NH3 sorption; downwind of the older feedlot, grass TN was correlated to soil TN. Our results suggest that atmospheric NH3 from livestock operations can contribute N to local soil and vegetation, and may need to be considered when determining fertilizer rates and assessing environmental impact.  相似文献   

8.
采用土壤随机布点法,采集某钢铁工业区周边34个土壤样品,利用美国TCLP法对钢铁工业区周边土壤重金属(Cu、 Zn、 Pb、 Cd)有效态进行实验分析和生态风险评价。结果表明, Cu、 Zn、 Pb、 Cd有效态含量分别在0.87~57.7 mg/kg、5.20~1338 mg/kg、1.09~379 mg/kg、1.15×10-3~69.9×10-3 mg/kg之间,钢铁工业区土壤不同程度地受到重金属的污染,其中以Zn污染最为严重。内梅罗污染指数评价中,处于安全水平的点位仅占17.6%,受到污染的点位占55.9%。其中,轻污染占20.6%,中污染占2.9%,重污染占32.4%。  相似文献   

9.
Lead contamination at shooting range soils is of great environmental concern. This study focused on weathering of lead bullets and its effect on the environment at five outdoor shooting ranges in Florida, USA. Soil, plant, and water samples were collected from the ranges and analyzed for total Pb and/or toxicity characteristic leaching procedure (TCLP) Pb. Selected bullet and berm soil samples were mineralogically analyzed with X-ray diffraction and scanning electron microscopy. Hydrocerussite [Pb3(CO3)2(OH)2] was found in both the weathered crusts and berm soils in the shooting ranges with alkaline soil pH. For those shooting ranges with acidic soil pH, hydrocerussite, cerussite (PbCO3), and small amount of massicot (PbO) were predominantly present in the weathered crusts, but no lead carbonate mineral was found in the soils. However, hydroxypyromorphite [(Pb10(PO4)6(OH)2] was formed in a P-rich acidic soil, indicating that hydroxypyromorphite can be a stable mineral in P-rich shooting range soil. Total Pb and TCLP Pb in the soils from all five shooting ranges were significantly elevated with the highest total Pb concentration of 1.27 to 4.84% (w/w) in berm soils. Lead concentrations in most sampled soils exceeded the USEPA's critical level of 400 mg Pb kg(-1) soil. Lead was not detected in subsurface soils in most ranges except for one, where elevated Pb up to 522 mg kg(-1) was observed in the subsurface, possibly due to enhanced solubilization of organic Pb complexes at alkaline soil pH. Elevated total Pb concentrations in bermudagrass [Cynodon dactylon (L.) Pers.] (up to 806 mg kg(-1) in the aboveground parts) and in surface water (up to 289 microg L(-1)) were observed in some ranges. Ranges with high P content or high cation exchange capacity showed lower Pb mobility. Our research clearly demonstrates the importance of properly managing shooting ranges to minimize adverse effects of Pb on the environment.  相似文献   

10.
Heavy metals seriously threaten the health of human beings when they enter the food chain. Therefore, policymakers require precise predictions of heavy metal concentrations in agricultural crops. In this paper we quantify the uncertainty of regression predictions of Cd and Pb in wheat (Triticum aestivum L.) and the contributions to the uncertainties in these predictions associated with inputs to the regression model. For each node of the 500- x 500-m grid covering the arable soils in The Netherlands, a latin hypercube sample size of 1000 is constructed from the uncertainty distributions of the explanatory variables (pH, soil organic matter [SOM], and heavy metal concentration in soil), the regression coefficients, and the random term of the regression model. This sample is used as input for the regression model to obtain 1000 values from the uncertainty distributions of the log(Cd) and log(Pb) concentration in wheat. There were no nodes where the recent EU quality standards for Cd and Pb (0.2 mg kg(-1) fresh wt.) in wheat were almost certain to be exceeded. For most nodes with clay soils, the quality standard for Cd in wheat almost certainly will not be exceeded; for Pb this is much less certain. The uncertainty in the Cd concentration in soil contributes most to the uncertainty in the predicted Cd concentrations in wheat (36% on the average), followed by the random term of the regression model (23%). For Pb the contribution of the random term is by far the largest (52%).  相似文献   

11.
The City of Montreal, Canada, evaluated the environmental impact and usefulness of in-ground copper (Cu)-treated baskets in controlling root growth of hardwood trees in nursery culture. Using baskets planted with 5-yr-old Norway maple (Acer platanoides L.) trees, the amount and temporal pattern of Cu release from the basket surface into soil was determined for two copper formulations: Cu metal powder and Cu(OH)2. Release of both Cu formulations from the basket surface decreased exponentially over time, with Cu concentration at the basket surface dropping to 2% of the initial Cu applied by the end of the second field season. Total Cu content increased significantly in the soil around the baskets (from 7 to 28 mg Cu kg(-1) soil) and in the baskets (from 7 to 50-70 mg Cu kg(-1) soil) over the two years of the study. Three levels of phosphorus application (33, 66, and 100% of the regular nursery rate of 465 kg ha(-1) yr(-1)) did not affect release of Cu from the basket surface. The release of Cu metal at 28 and 105 d in the field was significantly increased by inoculation with the symbiotic arbuscular mycorrhizal fungus (AMF) Glomus intraradices Schenck & Smith; however, AMF inoculation had no affect on Cu(OH)2 release. Trees grown in Cu-treated baskets and inoculated with G. intraradices had similar colonization to non-inoculated trees, suggesting that inoculation was not very effective and that AMF inoculum was already present in the root ball of the trees at planting. After two years, copper basket-grown trees had significantly less root colonization than isolated control trees growing in the open field. This strongly suggests that conditions inside the baskets were not favorable to AMF.  相似文献   

12.
Lead phytoextraction from contaminated soil with high-biomass plant species   总被引:5,自引:0,他引:5  
In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC-3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb-contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil-bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate-specifically adsorbed and Fe-Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one- and two-dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.  相似文献   

13.
Tannery effluents and relevant ground water and soil samples collected from various tanning industries of Peshawar were analyzed for Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn by the AAS method. The metal concentration data for the three media are reported in terms of basic statistical parameters, metal-to-metal correlations and linear regression analyses. Metal distributions in the three media were quite divergent and showed non-normal distributions with high standard deviation and skewness parameters. Sodium exhibited the highest mean levels of 1,277mg/L, 881mg/L and 12,912mg/kg in the effluent, ground water and soil samples, respectively. Among other metals, Cr concentrations were 410mg/L, 0.145mg/L, 100mg/kg and Ca, 278mg/L, 64.8mg/L, and 2,285mg/kg in the effluent, ground water and soil samples, respectively. Some significant correlations were observed between effluent and soils in terms of Na, Cr, Ni, Co and Pb. The ground water-soil interrelationship suggested that Na levels in the soil and ground water were significantly correlated with each other (r=0.486, P<0.01). Similarly, Cr in the soil is strongly correlated with Ca in ground water (r=0.486, P<0.01). These results were duly supported by the linear regression analysis of data. The source identification studies conducted using Principal Component Analysis (PCA) and Cluster Analysis (CA) evidenced that ground water and soil were being contaminated by the toxic metals emanating from the tannery effluents.  相似文献   

14.
In situ stabilization of soil lead using phosphorus   总被引:4,自引:0,他引:4  
In situ stabilization of Pb-contaminated soils can be accomplished by adding phosphorus. The standard remediation procedure of soil removal and replacement currently used in residential areas is costly and disruptive. This study was carried out to evaluate the influence of P and other soil amendments on five metal-contaminated soils and mine wastes. Seven treatments were used: unamended control; 2,500 mg of P/kg as triple superphosphate (TSP), phosphate rock (PR), acetic acid followed by TSP, and phosphoric acid (PA); and 5,000 mg of P/kg as TSP or PR. A significant reduction in bioavailable Pb, as determined by the physiologically based extraction test (PBET), compared with the control upon addition of P was observed in all materials tested. Increasing the amount of P added from 2,500 to 5,000 mg/kg also resulted in a significantly greater reduction in bioavailable Pb. Phosphate rock was equally or more effective than TSP or PA in reducing bioavailable Pb in four out of five soils tested. Preacidification produced significantly lower bioavailable Pb compared with the same amount of P from TSP or PR in only one material. Reductions in Pb bioavailability as measured by PBET were evident 3 d after treatment, and it may indicate that the reactions between soil Pb and P occurred in situ or during the PBET. No further reductions were noted over 365 d. X-ray diffraction data suggested the formation of pyromorphite-like minerals induced by P additions. This study suggests that P addition reduced bioavailable Pb by PBET and has potential for in situ remediation of Pb-contaminated soils.  相似文献   

15.
This paper reports the use of a new technique, flow field-flow fractionation (FlFFF), for the characterization of soil sampled under grassland. FlFFF can be used to determine the fine colloidal material in the <1 microm fraction obtained by gravitational settling of 1% m/v soil suspensions. The aim of this work was to determine the potential of FIFFF to characterize soil colloids in drained and undrained field lysimeters from soil cores sampled at different depths. Two different grassland lysimeter plots of 1 ha, one drained and one undrained, were investigated, and the soil was sampled at 20-m intervals along a single diagonal transect at three different depths (0-2, 10-12, and 30-32 cm). The results showed that there was a statistically significant (P = 0.05) increase in colloidal material at 30- to 32-cm depth along the transect under the drained lysimeter, which correlates with disturbance of the soil at this depth due to the installation of tile drains at 85-cm depth backfilled to 30-cm depth with gravel. Laser sizing was also used to determine the particles in the size range 1 to 2000 microm and complement the data obtained using FlFFF because laser sizing lacks resolution for the finer colloidal material (0.1-1.0 microm). The laser sizing data showed increased heterogeneity at 30- to 32-cm depth, particularly in the 50 to 250 microm size fraction. Therefore FIFFF characterized the finer material and laser sizing the coarser soil fraction (<2000 microm) at depth in drained and undrained grassland. This is of importance as colloidal material is more mobile than the larger material and consequently an important vector for contaminant transport from agricultural land to catchments.  相似文献   

16.
Trace element mobility in soils depends on contaminant concentration, chemical speciation, water movement, and soil matrix properties such as mineralogy, pH, and redox potential. Our objective was to characterize trace element dissolution in response to acidification of soil samples from two abandoned incinerators in the North Carolina Coastal Plain. Trace element concentrations in 11 soil samples from both sites ranged from 2 to 46 mg Cu kg(-1), 3 to 105 mg Pb kg(-1), 1 to 102 mg Zn kg(-1), 3 to 11 mg Cr kg(-1), < 0.1 to 10 mg As kg(-1), and < 0.01 to 0.9 mg Cd kg(-1). Acidified CaCl2 solutions were passed through soil columns to bring the effluent solution to approximately pH 4 during a 280-h flow period. Maximum concentrations of dissolved Cu, Pb, and Zn at the lowest pH of an experiment (pH 3.8-4.1) were 0.32 mg Cu L(-1), 0.11 mg Pb L(-1), and 1.3 mg Zn L(-1) for samples from the site with well-drained soils, and 0.25 mg Cu L(-1), 1.2 mg Pb L(-1), and 1.4 mg Zn L(-1) for samples from the site with more poorly drained soils. Dissolved Cu concentration at pH 4 increased linearly with increasing soil Cu concentration, but no such relationship was found for Zn. Dissolved concentrations of other trace elements were below our analytical detection limits. Synchrotron X-ray absorption near edge structure (XANES) spectroscopy showed that Cr and As were in their less mobile Cr(III) and As(V) oxidation states. XANES analysis of Cu and Zn on selected samples indicated an association of Cu(II) with soil organic matter and Zn(II) with Al- and Fe-oxides or franklinite.  相似文献   

17.
Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (alpha-Al(2)O(3)) and ferrihydrite (Fe(5)HO(8).4H(2)O). The Pb-sorbed minerals were placed in a simulated gastrointestinal tract (in vitro) to simulate ingestion of Pb-contaminated soil. The changes in Pb speciation were determined using extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge spectroscopy (XANES). Both corundum (sorption maximum of 2.13 g kg(-1)) and ferrihydrite (sorption maximum of 38.6 g kg(-1)) have been shown to sorb Pb, with ferrihydrite having a very high affinity for Pb. The gastric bioaccessible Pb for corundum was >85% for corundum when the concentration of Pb was >200 mg kg(-1). Bioaccessible Pb was not detectable at 4. However, much of the sorbed Pb will become bioaccessible under gastric conditions (pH 1.5-2.5) if this soil is ingested. Caution should be used before using these materials to remediate a soil where soil ingestion is an important exposure pathway.  相似文献   

18.
We studied the long-term in situ accumulation of Cu, Cr, Ni, and Zn in the soil profile of a large-scale effluent recharge basin after 24 yr of operation in a wastewater reclamation plant using the Soil Aquifer System approach in the Coastal Plain of Israel. The objective was to quantify metals accumulation in the basin's soil profile, clarify retention mechanisms, and calculate material balances and metal removal efficiency as the metal loads increase. Effluent recharge led to measurable accumulation, relative to the pristine soil, of Ni and Zn in the 0- to 4-m soil profile, with concentration increases of 0.3 to 1.3 mg kg(-1) and 2.9 to 6.4 mg kg(-1), respectively. Copper accumulated only in the 0- to 1-m top soil layer, with concentration increase of 0.28 to 0.76 mg kg(-1). Chromium concentration increased by 3.1 to 7.3 mg kg(-1) in the 0- to 1-m horizon and 0.9 to 2.3 mg kg(-1) at deeper horizons. Sequential selective extraction showed Cu tended to be preferentially retained by Fe oxides and organic matter (OM), Cr by OM, Ni by OM, and carbonate and Zn by carbonate. The average total retained amounts of Cu, Cr, Ni, and Zn were 0.7 +/- 1.0, 13.6 +/- 4.8, 4.3 +/- 3.6, and 28.7 +/- 5.4 g per a representative unit soil slab (1 m(2) x 4 m) of the basin, respectively. This amounts to 3.6 +/- 4.9%, 79.5 +/- 28.0%, 8.0 +/- 6.9%, and 9.3 +/- 1.8% of the Cu, Cr, Ni, and Zn loads, respectively, applied during 24 yr of effluent recharge (total of approximately 1880 m effluent load). The low long-term overall removal efficiency of the metals from the recharged effluent in the top horizon may be due to the metals' low concentrations in the recharged effluent and the low adsorption affinity and retention capacity of the sandy soil toward them. This leads to attainment of a quasi-equilibrium and a steady state in element distribution between the recharged effluent solution and the soil after few years of recharge and relatively small cumulative effluent loadings.  相似文献   

19.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

20.
The levels of zinc accumulated by roots, stems, and leaves of two plant species, Rubus ulmifolius and Phragmites australis, indigenous to the banks of a stream in a Portuguese contaminated site were investigated in field conditions. R. ulmifolius, a plant for which studies on phytoremediation potential are scarce, dominated on the right side of the stream, while P. australis proliferated on the other bank. Heterogeneous Zn concentrations were found along the banks of the stream. Zn accumulation in both species occurred mainly in the roots, with poor translocation to the aboveground sections. R. ulmifolius presented Zn levels in the roots ranging from 142 to 563 mg kg(-1), in the stems from 35 to 110 mg kg(-1), and in the leaves from 45 to 91 mg kg(-1), vs. average soil total Zn concentrations varying from 526 to 957 mg kg(-1). P. australis showed Zn concentrations in the roots from 39 to 130 mg kg(-1), in the stems from 31 to 63 mg kg(-1), and in the leaves from 37 to 83 mg kg(-1), for the lower average soil total Zn levels of 138 to 452 mg kg(-1) found on the banks where they proliferated. Positive correlations were found between the soil total, available and extractable Zn fractions, and metal accumulation in the roots and leaves of R. ulmifolius and in the roots and stems of P. australis. The use of R. ulmifolius and P. australis for phytoextraction purposes does not appear as an effective method of metal removing, but these native metal tolerant plant species may be used to reduce the effects of soil contamination, avoiding further Zn transfer to other environmental compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号