首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study undertaken in the surface waters of the Gulf of Fos (France), revealed very low salinities, high nutrient concentrations, and very rich phytoplanktonic populations (maximum 7.5·105 cells/l). Very often the phytoplanktonic populations attain abundances 2 to 15 times higher than maximum population densities found in the Mediterranean Sea. Such high cellular concentrations seem to suppress more or less the rates of relative photosynthesis if the concentration of chlorophyll a per 1 million cells is considered. Furthermore, the analysis of particular carbon yields high values. This phenomenon can be explained by the fact that, in addition to organic carbon, other organic forms of carbon were measured, especially some carbonates which are abundant in fresh waters. The C/N ratios found seem to support this explanation.  相似文献   

2.
• Polystyrene microplastic caused hormesis-like effects in Phaeodactylum tricornutum. • Low concentration of microplastic promoted growth, otherwise the opposite was true. • The change trends of pigment contents were opposite at two initial algae densities. • The chlorophyll fluorescence parameters were more sensitive at low algae density. The effects of pristine polystyrene microplastics (pMPs) without any pretreatment at different concentrations (0, 10, 20, 50, and 100 mg/L) on Phaeodactylum tricornutum Bohlin at two initial algae densities (105 and 106 cells/mL) were assessed in this study. Hormesis-like effects were found when microalgae grew with pMPs. The results showed that pMPs inhibited microalgae growth under a high concentration of microplastics tolerated by individual algal cell (low initial algae density) (up to −80.18±9.71%) but promoted growth when the situation was opposite (up to 15.27±3.66%). The contents of photosynthetic pigments including chlorophyll a, chlorophyll c and carotenoids showed resistance to pMPs stress under a low initial algae density and increased with time, but the opposite was true under a high initial algae density. Compared with the low initial algae density group, Qp received less inhibition, and NPQ (heat dissipation) also decreased under the high initial algae density. Under the low initial algae density, OJIP parameters such as Sm, N, Area, Pi Abs, ѱo, φEo, TRo/RC and ETo/RC were more perturbed initially and returned to the levels of the control group (without pMPs) over time, but they remained stable throughout the experiment at high initial algae density. These results show that microplastics in the marine environment may have different toxic effects on P. tricornutum at different growth stages, which is of great significance for understanding the impact of microplastics on marine microalgae and aquatic ecosystems.  相似文献   

3.
A population of a psychrophilic marine vibrio (Ant-300) suspended at a low cell density in natural seawater (SW) or artificial seawater (ASW) showed an initial 200-fold increase in cell numbers. Ant-300 suspended in ASW at various densities showed a magnified initial increase in numbers as well as increased longevity as the population density decreased. The magnitude of the initial increase and the viability of the cells after 7 weeks continued incubation were the same whether the cells were suspended in SW, ASW amended with amino acids, or organic-free ASW. Continued incubation (long-term starvation) of a culture of Ant-300 at low cell densities in ASW showed that after 70 weeks over 15 times the orginal number of cells were still viable. When compared to the starvation survival of other bacceria, Ant-300 exceeds the longest reported starvation survival by at least 2.5 times. Our data indicate that Ant-300 is especially adapted for survival at low nutrient concentrations and low population densities due to a sustained increase in cell numbers that may represent a species survival mechanism for marine bacteria.Technical Paper No. 4493, Oregon Agricultural Experiment Station.  相似文献   

4.
Cylindrical tanks of unfiltered seawater were rotated on a roller table until the particles in the seawater formed aggregates resembling marine snow. During the summer of 1987 comparisons were made between marine snow in field samples from two coastal sites on seven separate dates, and aggregates formed in the laboratory in seawater samples taken on the same dates. Aggregates in field and laboratory samples were photographed and their dimensions were determined. Particulate composition of the aggregates was characterized by the abundance of diatoms, benthic diatoms, diatom frustules, mineral grains, fecal pellets, and fungal spores. Laboratory-prepared aggregates had a significantly greater short axis, and significantly larger calculated volume than field aggregates. Particulate compositions of field aggregates were paralleled by similar changes in the laboratory product. Dry weights of known numbers of aggregates collected on three dates indicated no significant differences in calculated densities or porosities of marine snow formed in the field and in the laboratory. We suggest that this method of forming marine snow in the laboratory may provide researchers with a useful experimental tool.  相似文献   

5.
以硝普钠(Sodium nitroprusside,SNP)为一氧化氮(Nitric oxide,NO)供体研究了NO对海洋微藻生长的影响.对不同浓度SNP在海水介质中释放NO的过程进行了监测;对所培养的亚心形扁藻(Platymonas subcordiformis)和中肋骨条藻(Skeletonema costatum)进行藻密度测定,观测NO对微藻生长的影响.结果表明:5、10和100μmol·L-1的SNP释放NO浓度大约分别为6×10-9、9×10-9和2×10-7mol·L-1左右,而释放时间分别为4、5.5和7.5h.研究表明,NO对不同微藻有明显不同的作用规律:NO持续作用下,对亚心形扁藻的最佳作用浓度在10-8mol·L-1数量级;对赤潮藻中肋骨条藻的最佳作用浓度在10-9mol·L-1数量级;赤潮藻对NO的响应比非赤潮藻更灵敏,NO可能是海洋生态系中微藻生长重要的调节因子.  相似文献   

6.
7.
The quantitative significance of the nitrogenous compound glycine betaine (GBT) and its sulfur analog dimethylsulfoniopropionate (DMSP) to intracellular pools in marine phytoplankton is not well known. In a series of experiments conducted in August 1993, we measured these compounds, as well as total organic sulfur, carbon, and nitrogen, over the growth cycle in six isolates of marine phytoplankton, Amphidinium carterae Hulburt, Chrysochromulina sp. Lackey, Emiliania huxleyi Hay et Mohler, Prorocentrum minimum (Pavillard) Schiller, Skeletonema costatum (Greville) Cleve, and Tetraselmis sp. At the same time, we measured cellular concentrations of protein, amino acids, chlorophyll, and inorganic nutrients. All six species produced DMSP, while three produced GBT at lesser levels. In the Chrysochromulina sp. isolate, levels of GBT were greater than DMSP during the exponential phase of growth, but declined sharply as the culture approached stationary phase. This change appeared to coincide with the onset of nitrogen limitation. Other nitrogenous osmolytes were produced in five of the six species but in much smaller quantities. DMSP contributed significantly to cellular sulfur throughout the growth cycle although, in some algae, the proportion of dissolved DMSP increased substantially during stationary growth. When present, GBT formed a sizeable fraction of the cellular nitrogen only during exponential growth. A significant percentage (ca. 50%) of the organic nitrogen could not be accounted for even when cellular pools of protein, amino acids, inorganic nitrogen, and nitrogenous osmolytes were combined. Based on these experiments, there does not appear to be a reciprocal relationship between DMSP and GBT production, although GBT production does appear to be correlated with nitrogen availability. Received: 5 January 1998 / Accepted: 29 June 1999  相似文献   

8.
黄备  邵君波  魏娜  王益鸣 《生态环境》2014,(9):1457-1462
为准确掌握东海近岸海域赤潮发生情况,深入了解东海海域赤潮发生时和未发生时的生态环境条件,根据浙江省舟山海洋生态环境监测站对东海近岸海域常年的监测结果,选定从杭州湾外侧向南到温州南麂列岛的东海近岸海域为赤潮高发区,开展生态环境研究.2014 年4 月和5 月利用专业海洋调查船,按《海洋监测规范》对东海赤潮高发海域进行了二次综合海洋生态环境调查,结果发现调查海域氮、磷营养盐含量普遍较高,4 月研究海域无机氮均值为0.406 mg·L^-1,活性磷酸盐均值0.013 mg·L^-1;5 月无机氮均值0.244 mg·L^-1,活性磷酸盐均值0.004 mg·L^-1.大多数样品无机氮超一类海水水质标准,尤其是4 月91.7%的样品超-类海水标准,5 月也有35.7%样品超-类海水标准.硝酸盐氮是无机氮的主要存在形式.2014 年5 月调查期间发生了大面积的赤潮,赤潮原因种是东海原甲藻(Prorocentrum donghaiense),细胞密度平均在107/L 以上.分析赤潮发生前后的水环境变化,5 月调查海域海水温度有较大上升,各海域水温均超过了20 ℃,海域平均温度从4 月的15.9 ℃上升到5 月的21.9 ℃.通过本次研究发现在营养盐浓度普遍较高的调查海域,水温上升是引发赤潮的关键因素.使用专业统计软件SPSS17 发现赤潮藻类的细胞密度与水温、化学需氧量和溶解氧存在着极显著的正相关(P〈0.01),与活性磷酸盐、硝酸盐氮和无机氮存在着显著负相关(P〈0.05).另外本次调查还发现,大面积东海原甲藻赤潮暴发后,活性磷酸盐被大量消耗.综合目前有关东海原甲藻赤潮期间对活性磷酸盐的吸收动力学研究,发现今后应进一步加强这方面的调查研究.  相似文献   

9.
A mathematical model for the uptake of heavy metals in the benthic algae Ascophyllum nodosum has been developed. The model allows assignment of age-dependent growth parameters which also may be a function of external factors. Mortality curves for A. nodosum corresponding to a highly polluted and a nearly unpolluted area have been used in the study of metal uptake. Uptake has been simulated for different values of growth parameters and different concentrations of heavy metals in seawater. Emphasis has been on the uptake of zinc. The simulations showed that the concentration of zinc in the algae changed much less (6%) than the biomass (30%) with changes in intrinsic growth rate, mortality and carrying capacity.The concentration in the algae was found to be an approximately linear function of the mean concentration in seawater up to about 100 ppb. At very high concentrations, associated with high mortality, the deviation from linearity may be significant (about 13% at 162 ppb at one locality). The calculation indicates further that variations in the zinc concentration in the seawater are considerably damped in the algae.Simulations have also been performed to study the effects of sampling different parts of the algae, and some initial simulations have been performed to study the effects of heavy metal exchange between algae and sea water.  相似文献   

10.
Benthic marine primary producers affect the chemistry of their surrounding environment through metabolic processes. Photosynthesis and respiration will elevate or depress the concentration of oxygen in the diffusive boundary layer. Likewise, acid–base regulation and biomineralization/dissolution for calcifying species can alter the relative concentration of inorganic carbon species and thus pH. Here, we measured the relative ability of several common benthic primary producers from coral reef systems of the central Pacific and the Caribbean to simultaneously affect seawater oxygen concentration and pH values. Repeated measurements over a diel cycle confirmed that several primary producers substantially alter surrounding seawater chemistry over time. The majority of fleshy algae exhibited a stoichiometric ratio of oxygen to hydrogen ions not significantly different from one during daylight hours. In contrast, calcifiers exhibited significantly lower oxygen to hydrogen ion ratios that were unique for each species and were inversely correlated with known rates of calcification. These data provide the first quantitative estimates of the simultaneous influence of several species of benthic primary producers on water column oxygen concentrations and pH across different tropical reef systems. Finally, because more productive fleshy taxa have the potential to raise both oxygen and pH during the day to a greater extent than calcified species, our results suggest that some fleshy taxa may provide a buffering capacity to future ocean acidification scenarios.  相似文献   

11.
Ulvaria obscura, a prominent component of green tide blooms in Washington, is unique among macroalgae because it contains dopamine. To examine dopamine release by U. obscura following simulated low tides, we conducted 6 field experiments in which algae were emersed for 75 min and then immersed in filtered seawater (FSW). Dopamine was measured in algal tissues prior to emersion and 3 h after immersion and in seawater for 3 h following immersion. In our experiments, algae released 7–100% of their tissue dopamine, resulting in average seawater concentrations of 3–563 μM. In 5 of 6 experiments, seawater dopamine concentrations were highest immediately after immersion, and then decreased over time. The percentages of dopamine released were not correlated with tissue dopamine concentrations, but were positively correlated with solar radiation during emersion. The release of dopamine, which is both cytotoxic and genotoxic, may explain the negative effects of U. obscura exudates on marine organisms.  相似文献   

12.
Cu2+对普通小球藻的光合毒性:初始藻密度的影响   总被引:3,自引:0,他引:3  
为了研究Cu2+对普通小球藻的光合毒性以及初始藻密度对Cu2+光合毒性的影响,将初始密度为107mL-1的普通小球藻暴露于Cu2+的6个浓度(0、5、10、20、30和40μmol.L-1)中进行96 h的毒性暴露实验,在2、48和96 h分别利用叶绿素荧光仪(MAXI-Imaging-PAM)测定各项叶绿素荧光参数,同时,针对3个不同初始密度的普通小球藻(2×106、5×106和2×107mL-1),测定并比较了其暴露于0、20和40μmol.L-1的Cu2+12 h后,叶绿素荧光参数的变化。不同初始藻密度的毒性实验结果显示,初始藻密度为2×106mL-1时,20和40μmol.L-1Cu2+可完全抑制普通小球藻的光合作用;当初始藻密度增加到5×106和2×107mL-1时,40μmol.L-1Cu2+对普通小球藻的实际光合作用效率仅有约75%和25%的抑制。这表明初始藻密度越大,Cu2+的光合毒性越弱。但随着初始藻密度的增加,初始藻密度的变化对Cu2+光合毒性的影响减弱。初始藻密度为107mL-1时的毒性实验结果显示,暴露于20~40μmol.L-1Cu2+2 h后,普通小球藻的光合作用即受到抑制,且该抑制程度随Cu2+浓度的增加而增强,并随着暴露时间的延长有所缓解。随着Cu2+浓度的增加,最大量子产量(Fv/Fm)、实际量子产量(Yield)、相对电子传递速率(ETR)和光化学淬灭系数(qP)逐渐降低,非光化学淬灭系数(NPQ/4)逐渐上升。研究结果表明,Cu2+对普通小球藻的光合作用有一定的抑制作用,其机理可能为通过引起PSII系统反应中心的部分失活,导致PSII系统反应中心的开放比例减少,引起电子传递速率降低以及ATP和NADPH的合成减慢,从而使光合作用速率下降;初始藻密度对Cu2+的光合毒性大小有较大的影响,故在进行藻类的毒性实验时,也应关注初始藻密度的影响。  相似文献   

13.
Marine macroalgae need carbon-concentrating mechanisms because they have only limited access to CO2 in their natural environment. Previous studies have shown that one important strategy common to many algae is the activity of periplasmic carbonic anhydrases that catalyse the dehydration of HCO3- into CO2. The latter can then cross the plasma membrane by passive diffusion. We hypothesised that an active (energy-consuming) mechanism might also be involved in the membrane transport of CO2, as is the case in a number of microalgae. Coccotylus truncatus was chosen as a model organism for this study because it belongs to a group of algae that usually lack direct HCO3- uptake: sublittoral red algae. The method used to study carbon uptake was pH drift of the seawater medium surrounding the algae in a closed vessel, with and without the addition of specific inhibitors or proton buffers. Measured parameters included pH, total inorganic carbon and alkalinity of the seawater medium. Our results suggest that, in C. truncatus, periplasmic carbonic anhydrase as well as H+ extrusion, probably driven by a vanadate-sensitive P-type H+-ATPase (proton pump), are involved in CO2 uptake. No direct uptake of HCO3- was discovered. This paper also presents data on the buffer capacity of several proton buffers and the carbon-uptake inhibitors acetazolamide, 4,4'-diisothiocyano-stilbene-2,2'-disulfonate (DIDS) and orthovanadate in Baltic Sea water with a salinity of 6.5 psu.  相似文献   

14.
The transfer of chlorinated hydrocarbons (CHC) in a laboratory simulation of a three trophic level marine food chain was studied. The food chain consisted of the algal flagellate Dunaliella sp., the rotifer Brachionus plicatilis, and the larva of the Northern anchovy Engraulis mordax. CHC were introduced into the seawater at concentrations representative of near-shore conditions off southern California without the use of dispersing agents. Each trophic level appeared to be in a steady-state at the time of first sampling, 5 days after inoculation. Apparent partition coefficients were calculated for each trophic level. The CHC contamination in the diet of the rotifers and anchovy larvae was also calculated. Unfed anchovy larvae accumulated the same amount of CHC as fed larvae and the final concentration appeared to be dependent on the CHC concentration in the seawater. The data in this report suggest that CHC accumulation is not a food-chain phenomenon but rather the result of direct partitioning of the compounds between the seawater and the test organisms.  相似文献   

15.
The effects of exposure to sediment-associated tri-n-butyltin chloride (TBTCl) were examined in the euryhaline European flounder, Platichthys flesus (L.). The effects were quantified by measuring the changes in sodium efflux; Na+/K+-ATPase activity; and the numbers, areas, and distribution of chloride cells in the gills of freshwater-adapted fish, following a rapid transfer to seawater. Following the transfer to seawater, the Na+/K+-ATPase activity and the sodium efflux were significantly increased in the control group but remained unchanged in the TBTCl-exposed group. The normal morphological changes to the gill epithelium associated with seawater adaptation, which involve chloride cell distribution, took place in the control group but were significantly inhibited or delayed in the TBTCl group. The results presented in this study lead to the conclusion that environmental concentrations of tri-n-butyltin chloride in sediments are capable of significantly disrupting both the physiological and the morphological components of iono-regulatory functions of an estuarine flatfish.  相似文献   

16.
J. Otto  S. K. Pierce 《Marine Biology》1981,61(2-3):185-192
In order to study the interaction of the extracellular and intracellular osmoregulatory systems of the bivalve Rangia cuneata, we have measured blood osmotic and ionic concentrations together with intracellular free amino acid concentrations and total tissue water under identical salinity conditions. Like freshwater bivalves, the blood of R. cuneata is maintained hyperosmotic (50 mOsm) to the environment in salinities below 110 mosm by the regulation of Na+, Cl-, K+ and Ca2+ concentrations. On the other hand in company with marine bivalves, R. cuneata also regulates intracellular free amino acids (FAA) as a mechanism to control cellular volume during osmotic stress over the entire non-lethal salinity range (3 to 620 mOsm). Alanine is the predominant intracellular osmotic effector. Thus, by utilizing the osmoregulatory mechanisms of both marine and freshwater bivalves, R. cuneata is able to tolerate salinities ranging from freshwater to 25 ppt and to traverse the faunal salinity boundary, known as the horohalinicum (5 to 8 ppt), controlling cell volume throughout.Please address requests for reprints to Dr. S. K. Pierce  相似文献   

17.
Oysters (Crassostrea virginica) were exposed for 3 days to mercury-203 labeled HgCl2 or CH3HgCl added directly to artificial seawater or added preconcentrated on the marine diatom Phaeodactylum tricornutum. The concentration of mercury in 5 tissues was measured for 45 days after mercury was removed from the ambient water. At the beginning of the depuration period, the highest concentrations of mercury in tissues were attained in: gill>digestive system>mantle>gonad>muscle in oysters exposed to water containing mercury; and in digestive system>gill>mantle> gonad>muscle in oysters fed labeled algae. This same distribution pattern is seen for both chemical forms of mercury. Although the initial pattern of accumulation was identical for both mercury compounds within each exposure group, the fate of the accumulated mercury was very different after 45-days depuration. In oysters accumulating mercury directly from seawater, inorganic mercury residues rapidly declined in gill and digestive tissue, but were slowly reduced in mantle, gonadal, and muscle tissue. This pattern was duplicated by oysters exposed to methyl mercuric chloride in seawater except that gonadal and muscle residues greatly increased during depuration. In oysters ingesting labeled P. tricornutum cells, mercuric chloride and methyl mercuric chloride residues rapidly declined in gill and digestive tissue, remained constant in the mantle, but sharply increased in gonadal and muscle tissue during depuration.  相似文献   

18.
选择赤潮异弯藻(Heterosigma akashiwo Hada)、三角褐指藻(Pheodactylum tricornutum Bohlin)、海洋原甲藻(Prorocentrum micans Ehrenber)、裸甲藻(Gymnodinim sp.)、亚心型扁藻(Platymonas subcordiforus)、旋链角毛藻(Chaetoceros curvisetus Cleve)、中肋骨条藻(Skeletonema costatum(Greville)Cleve)、青岛大扁藻(Platymonashelgolanidica)8种浮游植物,采用一次培养实验方法,研究了重金属Cu(Ⅱ)对海洋浮游植物生长的影响,并在Logistic生长模型的基础上结合Lorentz方程和GaussAmp方程,引入Cu(Ⅱ)浓度项,建立了Cu(Ⅱ)胁迫下海洋浮游植物生长动力学模型——Logistic-W模型,描述了Cu(Ⅱ)存在条件下海洋浮游植物的生长过程.结果表明,较高浓度Cu(Ⅱ)对8种浮游植物的生长普遍具有抑制作用,而较低浓度Cu(Ⅱ)则可促进旋链角毛藻、中肋骨条藻、青岛大扁藻的生长;Lorentz方程可以描述Cu(Ⅱ)浓度对浮游植物生长速率参数的影响,而GaussAmp方程可以描述Cu(Ⅱ)浓度对浮游植物生物量的影响;Cu(Ⅱ)胁迫下浮游植物的生长可用动力学方程Logistic-W描述,实验验证该模型合理,其拟合相关系数R2为0.817~0.993,平均为0.916.论文提出的生长模型可以预测不同浓度Cu(Ⅱ)胁迫下海洋浮游植物的生长情况,也可根据浮游植物的生长情况推测相应海区的Cu(Ⅱ)浓度.  相似文献   

19.
Many planktonic organisms have adaptations such as floats or lighter substances to obtain buoyancy to help them remain in the surface layer of the ocean where photosynthetic primary production occurs and food is most abundant. The almost totally transparent eel larvae, called leptocephali, are a unique member of the planktonic community of the surface layer, but their ecology and physiology are poorly understood. We conducted a comparative study on the specific gravity of planktonic animals including 25 taxa of 7 phyla of marine invertebrates and 6 taxa of leptocephali (vertebrate) to gain a broad perspective on the buoyancy of the eggs and larval stages of the Japanese eel. The specific gravity values of the various freshly caught marine invertebrate taxa varied widely from 1.020 to 1.425, but leptocephali had some of the lowest values (1.028–1.043). Artificially cultured live leptocephali had even greater buoyancies with specific gravities of 1.019–1.025 that were close to or lower than seawater, and their buoyancy showed ontogenetic changes among the different early life history stages. Leptocephali appear to have a unique mechanism of buoyancy control by chloride cells all over body surface through osmoregulation of body fluid contained in the extracellular matrix of transparent gelatinous glycosaminoglycans filling their bodies. This adaptation is likely a key factor for their survival by helping them to remain in the surface layer where food particles are the most abundant, while being transparent for predator avoidance. The ontogenetic change in buoyancy of eel eggs, leptocephali and glass eels likely enhances their larval survival, transport, and recruitment to terrestrial freshwater habitats.  相似文献   

20.
S. Einarson 《Marine Biology》1993,117(4):599-606
Seasonal variations of oxygen consumption rate, haemolymph osmolality and the concentrations of the inorganic ions potassium and sodium in the haemolymph were measured in the littoral amphipod Gammarus oceanicus collected from the Trondheimsfjorden, Norway in 1987. For each season comparisons were made of amphipods acclimated for 1 wk to 0.5, 4.5, 10.0, 15.0 and 20.0°C, in combination with seawater osmolalities of 100, 500 and 1200 mOsm and to the seawater osmolality corresponding to that of the collecting site. The oxygen consumption rate showed a temperature insensitivity when the amphipods were acclimated to low temperatures in winter and high temperatures in summer. Significant differences were found in oxygen consumption between individuals acclimated to various medium osmolalities, possibly indicating higher energy requirements for osmotic and ionic regulation at low seawater osmolalities. Oxygen consumption rate was significantly higher in summer than in other seasons. Haemolymph osmolality and the concentration of the inorganic ions sodium and potassium were not influenced by temperature or season. Determination of haemolymph osmolalities and concentrations of inorganic ions revealed that G. oceanicus is a strong hyper-osmotic and hyper-ionic regulator in dilute seawater. The concentration of potassium in the haemolymph is less influenced by seawater osmolality than haemolymph osmolality and the haemolymph concentration of sodium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号