首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper presents key challenges in modeling water quality processes of riparian ecosystems: How can the spatial and temporal extent of water and solute mixing in the riparian zone be modeled? What level of model complexity is justified? How can processes at the riparian scale be quantified? How can the impact of riparian ecosystems be determined at the watershed scale? Flexible models need to be introduced that can simulate varying levels of hillslope‐riparian mixing dictated by topography, upland and riparian depths, and moisture conditions. Model simulations need to account for storm event peak flow conditions when upland solute loadings may either bypass or overwhelm the riparian zone. Model complexity should be dictated by the level of detail in measured data. Model algorithms need to be developed using new macro‐scale and meso‐scale experiments that capture process dynamics at the hillslope or landscape scales. Monte Carlo simulations should be an integral part of model simulations and rigorous tests that go beyond simple time series, and point‐output comparisons need to be introduced. The impact of riparian zones on watershed‐scale water quality can be assessed by performing simulations for representative hillsloperiparian scenarios.  相似文献   

2.
    
ABSTRACT: This study determines the most cost effective spatial pattern of farming systems for improving water quality and evaluates the economic value of riparian buffers in reducing agricultural nonpoint source pollution in a Midwestern agricultural watershed. Economic and water quality impacts of alternative farming systems are evaluated using the CARE and SWAT models, respectively. The water quality benefits of riparian buffers are estimated by combining experimental data and simulated water quality impacts of fanning systems obtained using SWAT. The net economic value of riparian buffers in improving water quality is estimated by total watershed net return with riparian buffers minus total watershed net return without riparian buffers minus the opportunity cost of riparian buffers. Exclusive of maintenance cost, the net economic value of riparian buffers in reducing atrazine concentration from 45 to 24 ppb is $612,117 and the savings in government cost is $631,710. Results strongly support efforts that encourage farmers to develop or maintain riparian buffers adjacent to streams.  相似文献   

3.
Newbold, J. Denis, Susan Herbert, Bernard W. Sweeney, Paul Kiry, and Stephen J. Alberts, 2010. Water Quality Functions of a 15-Year-Old Riparian Forest Buffer System. Journal of the American Water Resources Association (JAWRA) 46(2):299-310. DOI: 10.1111/j.1752-1688.2010.00421.x Abstract: We monitored long-term water quality responses to the implementation of a three-zone Riparian Forest Buffer System (RFBS) in southeastern Pennsylvania. The RFBS, established in 1992 in a 15-ha agricultural (row crop) watershed, consists of: Zone 1, a streamside strip (∼10 m wide) of permanent woody vegetation for stream habitat protection; Zone 2, an 18- to 20-m-wide strip reforested in hardwoods upslope from Zone 2; and Zone 3, a 6- to 10-m-wide grass filter strip in which a level lip spreader was constructed. The monitoring design used paired watersheds supplemented by mass balance estimates of nutrient and sediment removal within the treated watershed. Tree growth was initially delayed by drought and deer damage, but increased after more aggressive deer protection (1.5 m polypropylene shelters or wire mesh protectors) was instituted. Basal tree area increased ∼20-fold between 1998 and 2006, and canopy cover reached 59% in 2006. For streamwater nitrate, the paired watershed comparison was complicated by variations in both the reference stream concentrations and in upslope groundwater nitrate concentrations, but did show that streamwater nitrate concentrations in the RFBS watershed declined relative to the reference stream from 2002 through the end of the study in early 2007. A subsurface nitrate budget yielded an average nitrate removal by the RFBS of 90 kg/ha/year, or 26% of upslope subsurface inputs, for the years 1997 through 2006. There was no evidence from the paired watershed comparison that the RFBS affected streamwater phosphorus concentration. However, groundwater phosphorus did decline within the buffer. Overland flow sampling of 23 storms between 1997 and 2006 showed that total suspended solids concentration in water exiting the RFBS to the stream was on average 43% lower than in water entering the RFBS from the tilled field. Particulate phosphorus concentration was lower by 22%, but this removal was balanced by a 26% increase in soluble reactive phosphorus so that there was no net effect on total phosphorus.  相似文献   

4.
    
ABSTRACT: The effectiveness of streamside management zones (SMZs) was assessed for reducing sediment transport from concentrated overland flow draining two Georgia Piedmont clearcuts that had undergone mechanical and chemical site preparation and planting. Silt fences were used to trap sediment transport from zero‐order ephemeral swales at the edge of and within SMZs. Four control swales and nine treatment swales were studied. A double mass curve approach was used to graphically compare sediment accumulation rates at the edge of SMZs to accumulation rates within the SMZs at a distance consistent with current recommendations for SMZ width in Georgia. SMZ efficiencies for trapping sediment transported by concentrated flow ranged from 71 to 99 percent. No statistical model was found to explain how SMZ efficiencies varied with SMZ and contributing area characteristics. Measured sediment accumulations at the SMZ boundary were compared to Revised Universal Soil Loss Equation (RUSLE) predictions of up‐ slope erosion, and a delivery ratio of 0.25 was calculated. SMZs had a quantifiable and substantial ameliorating effect on sediment transport from concentrated overland flow on the clearcut study sites.  相似文献   

5.
    
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

6.
    
ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site‐specific studies of riparian ground water nitrate removal to spatial data can help target high‐value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate‐enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate‐N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate‐enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases.  相似文献   

7.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual.  相似文献   

8.
    
ABSTRACT: Coastal watersheds in the southeastern United States are rapidly changing due to population growth and attendant increases in residential development, industry, and tourism related commerce. This research examined spatial and temporal patterns of nutrient concentrations in streams from 10 small watersheds (< 4 km2) that drain into Murrells Inlet (impacted) and North Inlet (pristine), two high salinity estuaries along the South Carolina coast. Monthly grab samples were collected during baseflow during 1999 and analyzed for total and dissolved inorganic and organic forms of nitrogen and phosphorus. Data were grouped into forested wetland creeks (representing predevelopment reference sites), urban creeks, and urban ponds. DON and NH4 concentrations were greater in forested streams than in urban streams. NO3 and TP concentrations were greatest in urban streams. Seasonally, concentrations were highest during summer for TN, NH4, DON, and TP, while NO3 concentrations were greatest during winter. Nutrient ratios clearly highlighted the reduction in organic nitrogen due to coastal development. Multiple regression models to predict instream nutrient concentrations from land use in Murrells Inlet suggest that effects are not significant (small r2). The findings indicate that broad land use/land cover classes cannot be used to predict nutrient concentrations in streams in the very small watersheds in our study areas.  相似文献   

9.
    
ABSTRACT: Economic values of riparian buffers in a watershed are evaluated by the changes in the net economic return for farming with and without riparian buffers when achieving the same water quality objectives. The simulated water quality impacts of alternative farming systems using SWAT and experimental data for riparian buffers are used in a mathematical optimization model to estimate net economic return for farming subject to a water quality objective. Physical characteristics such as stream length, channel slope, average land slope, cropland percentage and several soil attributes are identified in the watershed using ARC/INFO GIS. A regression model is then used to evaluate the impacts of these physical characteristics on the estimated economic values of buffers. The study is conducted in Goodwater Creek watershed, Missouri. The results show the estimated economic value of buffers is significantly affected by some soil properties, stream length, and cropland percentage in watershed and can be used to improve the effectiveness of riparian buffers at watershed and regional levels.  相似文献   

10.
    
Water quality trading (WQT) has the potential to be a low‐cost means for achieving water quality goals. WQT allows regulated wastewater treatment plants (WWTPs) facing discharge limits the flexibility to either reduce their own discharge or purchase pollution control from other WWTPs or nonpoint sources (NPSs) such as agricultural producers. Under this limited scope, programs with NPSs have been largely unsuccessful at meeting water quality goals. The decision to participate in trading depends on many factors including the pollution control costs, uncertainty in pollution control, and discharge limits. Current research that focuses on making WQT work tends to identify how to increase participation by traditional traders such as WWTPs and agricultural producers. As an alternative, but complementary approach, we consider whether augmenting WQT markets with nontraditional participants would help increase the number of trades. Determining the economic incentives for these potential participants requires the development of novel benefit functions requiring not only economic considerations but also accounting for ecological and engineering processes. Existing literature on nontraditional participants in environmental markets tends to center on air quality and only increasing citizen participation as buyers. Here, we consider the issues for broadening participation (both buyers and sellers) in WQT and outline a multidisciplinary approach to begin evaluating feasibility.  相似文献   

11.
    
This paper studies the economics of a water quality trading market in a predominantly agricultural watershed, and explores the effects of credit stacking in such a market when buyers and sellers of pollution credits can only reduce pollution with large, discrete investments that yield discontinuous supply and demand. The research simulates hypothetical water quality trading markets in the corn‐belt area of Illinois, where wastewater treatment plants (WWTPs) can pay farmers to reduce nutrients by installing wetlands and farmers may or may not be allowed to earn payments for multiple services from one wetland. We find that wetlands are a more cost‐effective way to mitigate nitrogen pollution than abatement by WWTPs. Stacking credits may improve social welfare while providing more ecosystem services if there is enough demand for the primary credit in the market (nitrogen) to cover most of the cost of installing the wetland but the supply of nitrogen credits is not exhausted. However, in the presence of lumpy pollution reduction activities, the effects of allowing stacked credit sales are idiosyncratic and not necessarily positive; stacked payments may or may not satisfy additionality. The results imply that credit trading for nitrogen is likely to make society better off, but the effects of allowing farmers to receive multiple payments from a single wetland depend on details of the situation.  相似文献   

12.
    
ABSTRACT: Phosphorus (P) in runoff from long term animal waste application fields can contribute to accelerated eutrophication of surface waters. Manure when applied at nitrogen (N) agronomic rates generally increases soil P concentrations, which can increase runoff of soluble P. Along the North Bosque River in central Texas, dairy waste application fields are identified as the most controllable nonpoint source of soluble P in a total maximum daily load. To evaluate P reduction practices for fields high in soil extractable P, edge‐of‐field runoff was measured from paired plots of Coastal bermudagrass (Cynodon dactylon) and sorghum (Sorghum bicolor)/ winter wheat (Triticum spp.). Plots (about 0.4 ha) received manure at P agronomic rates following Texas permit guidelines and commercial N during the pretreatment period. During the post‐treatment period, control plots continued to receive manure at P agronomic rates and commercial N. Treatment plots received only commercial N during the post‐treatment period. Use of only commercial N on soils with high extractable P levels significantly decreased P loadings in edge‐of‐field runoff by at least 40 percent, but runoff concentrations sometimes increased. No notable changes in extractable soil P concentrations were observed after five years of monitoring due to drought conditions limiting forage uptake and removal.  相似文献   

13.
    
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

14.
    
ABSTRACT: Urban runoff contributes to nonpoint source pollution, but there is little understanding of the way that pattern and extent of urbanization contributes to this problem. Indicators of type and density of urbanization and access to municipal services were examined in six urban watersheds in Durham, North Carolina. Principal components analysis (PCA) was used to identify patterns in the distribution of these variables across the urban landscape. While spatial variation in urban environments is not perfectly captured by any one variable, the results suggest that most of the variation can be explained using several variables related to the extent and distribution of urban development. Multiple linear regression models were fit to relate these urbanization indicators to total phosphorus, total kjeldahl nitrogen, total suspended solids, and fecal coliforms. Development density was correlated to decreased water quality in each of the models. Indicators of urbanization type such as the house age, amount of contiguous impervious surface, and stormwater connectivity explained additional variation. In the nutrient models, access to city services was also an important factor. The results indicate that while urbanization density is important in predicting water quality, indicators of urbanization type and access to city services help explain additional variation in the models.  相似文献   

15.
    
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

16.
    
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

17.
    
ABSTRACT: Wetlands that treat holding pond effluent can be designed to utilize the pond storage capacity to allow flexibility in system management. Management of a wetland as a sequencing batch reactor can simplify operation and control detention times, but little performance data on such systems are available. The objective of this study was to evaluate the batch reactor wetland concept by quantifying removal of chemical oxygen demand (COD), total suspended sediments (TSS), total nitrogen (TN), ammonium (NH4), nitrate (NO3), total phosphorus (TP), and orthophosphate (PO4) and by assessing the suitability of first‐order kinetics. Weekly samples were collected following batch loadings of wetland cells with high concentration or low concentration dairy holding pond wastewater during both fall and spring seasons. During three‐week batch periods without plants, overall mass removal averaged 54 percent for COD, 58 percent for TSS, 90 percent for TN, 72 percent for NH4, ‐54 percent for NO3, 38 percent for TP, and ‐8 percent for PO4. Best fit, first‐order kinetic rate constant (k) and background concentration (C*) for COD varied by season, with k = 0.024/d and C*= 0 mg/l in fall and k = 0.056/d and C*= 200 mg/l in spring. Ammonium exhibited a consistent C*= 0 mg/l but had variable rate constants of k = 0.121/d for low concentration treatments and k = 0.079/d for high concentration treatments. Using first‐order kinetics was also appropriate for TN, with k = 0.061/d and C*= 0 mg/l for all loadings and seasons, but was not consistently appropriate for TP or PO4. These results support the use of first‐order kinetics to describe treatment in batch reactor wastewater treatment wetlands without vegetation, perhaps during the establishment phase or in open water zones of vegetated wetlands. Further work is needed to assess the effects of vegetation.  相似文献   

18.
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield.  相似文献   

19.
Richards, R. Peter, Ibrahim Alameddine, J. David Allan, David B. Baker, Nathan S. Bosch, Remegio Confesor, Joseph V. DePinto, David M. Dolan, Jeffrey M. Reutter, and Donald Scavia, 2012. Discussion –“Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models” by Dale M. Robertson and David A. Saad. Journal of the American Water Resources Association (JAWRA) 1‐10. DOI: 10.1111/jawr.12006 Abstract: Results from the Upper Midwest Major River Basin (MRB3) SPARROW model and underlying Fluxmaster load estimates were compared with detailed data available in the Lake Erie and Ohio River watersheds. Fluxmaster and SPARROW estimates of tributary loads tend to be biased low for total phosphorus and high for total nitrogen. These and other limitations of the application led to an overestimation of the relative contribution of point sources vs. nonpoint sources of phosphorus to eutrophication conditions in Lake Erie, when compared with direct estimates for data‐rich Ohio tributaries. These limitations include the use of a decade‐old reference point (2002), lack of modeling of dissolved phosphorus, lack of inclusion of inputs from the Canadian Lake Erie watersheds and from Lake Huron, and the choice to summarize results for the entire United States Lake Erie watershed, as opposed to the key Western and Central Basin watersheds that drive Lake Erie’s eutrophication processes. Although the MRB3 SPARROW model helps to meet a critical need by modeling unmonitored watersheds and ranking rivers by their estimated relative contributions, we recommend caution in use of the MRB3 SPARRROW model for Lake Erie management, and argue that the management of agricultural nonpoint sources should continue to be the primary focus for the Western and Central Basins of Lake Erie.  相似文献   

20.
    
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号