首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Discussion, Nash et al. (2019) estimate the seasonal change in groundwater volume for a portion of the restored Sierra Nevada Meadow that we evaluated (Hunt et al. 2018) and use this estimate as an upper bound on the possible contribution to flow that is attributable to restoration. The authors conclude that raising the channel bed elevation and reconnecting the meadow floodplain most likely reduced summer streamflow. In contrast, we report at least a fivefold increase in baseflow from the meadow in the years following restoration. In addition, we observed that, after restoration, the previously intermittent stream below the meadow flowed continuously throughout the summer months, despite record drought conditions, and in 2015, the lowest snowpack on record. We suggest that the groundwater budget presented in the Discussion may not adequately represent conditions within the meadow because the authors extrapolate from 5 near‐channel groundwater wells across 62 ha of meadow and assume an area of influence that is approximately one‐sixth of the meadow area. We conclude that the conversion of an intermittent stream to perennial flow during drought conditions is a stronger check on our gauge data than the groundwater budget presented in the Discussion.  相似文献   

2.
Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah's Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses.  相似文献   

3.
Headwater streams are the most numerous in terms of both number and length in the conterminous United States and play important roles as spawning and rearing grounds for numerous species of anadromous fish. Stream temperature is a controlling variable for many physical, chemical, and biological processes and plays a critical role in the overall health and integrity of a stream. We investigated the controls on stream temperature in salmon‐bearing headwater streams in two common hydrogeologic settings on the Kenai Peninsula, Alaska: (1) drainage‐ways, which are low‐gradient streams that flow through broad valleys; and (2) discharge‐slopes, which are high gradient streams that flow through narrow valleys. We hypothesize local geomorphology strongly influences surface‐water and groundwater interactions, which control streamflow at the network scale and stream temperatures at the reach scale. The results of this study showed significant differences in stream temperatures between the two hydrogeologic settings. Observed stream temperatures were higher in drainage‐way sites than in discharge‐slope sites, and showed strong correlations as a continuous function with the calculated topographic metric flow‐weighted slope. Additionally, modeling results indicated the potential for groundwater discharge to moderate stream temperature is not equal between the two hydrogeologic settings, with groundwater having a greater moderating effect on stream temperature at the drainage‐way sites.  相似文献   

4.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

5.
Carbonate‐sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface‐water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater‐fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air‐water temperature relationships for 40 GWFS in southeastern Minnesota. A 40‐stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface‐water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater‐fed systems, but will do so at a slower rate than surface‐water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.  相似文献   

6.
An approach for assessing the potential ecologic response of groundwater‐dependent riparian vegetation to flow alteration is developed, focusing on change to groundwater. Groundwater requirements for riparian vegetation are reviewed in conjunction with flow alteration statistics. Where flow alteration coincides with groundwater‐related vegetation sensitivities, scenarios are developed for groundwater simulation. Groundwater depths and recession rates in the riparian zone are simulated for baseline and altered stream hydrographs, with changes to river stage and width represented with a transient, flow‐dependent boundary condition. Potential flow diversion from the Upper Gila River in New Mexico is examined. Statistical flow alteration analysis, applying prospective diversions to a 76‐year record of daily flow, shows that flows in the winter‐spring months and within the high‐pulse to small flood range are subject to greatest potential change. Groundwater simulation scenarios are developed for these flow conditions in representative dry, near‐average, and wet years. Differences in groundwater elevations, generally less than 0.25 m during the flow alteration period, dissipate rapidly following cessation of diversion. Relating groundwater depth, recession rates and range of fluctuations to riparian vegetation needs, we find adverse ecological response is not expected from groundwater impacts for the flow alteration examined.  相似文献   

7.
In mountains of the western United States, channel incision has drawn down the water table across thousands of square kilometers of meadow floodplain. Here climate change is resulting in earlier melt and reduced snowpack and water resource managers are responding by investing in meadow restoration to increase springtime storage and summer flows. The record‐setting California drought (2012–2015) provided an opportunity to evaluate this strategy under the warmer and drier conditions expected to impact mountain water supplies. In 2012, 0.1 km2 of meadow floodplain was reconnected by filling an incised channel through Indian Valley in the central Sierra Nevada Mountains of California. Despite sustained drought conditions after restoration, summer baseflow from the meadow increased 5–12 times. Before restoration, the total summer outflow from the meadow was 5% more than the total summer inflow. After restoration, total summer outflow from the meadow was between 35% and 95% more than total summer inflow. In the worst year of the drought (2015), when inflow to the meadow ceased for at least one month, summer baseflow was at least five times greater than before restoration. Groundwater levels also rose at four out of five sites near the stream channel. Filling the incised channel and reconnecting the meadow floodplain increased water availability and streamflow, despite unprecedented drought conditions.  相似文献   

8.
Abstract: The effect of stream restoration on hyporheic functions has been neglected, although channel rehabilitation projects have a potential to alter stream‐ground‐water interactions. The present study examined the effect of an artificially constructed gravel bar and re‐meandered stream channel on lateral hyporheic exchange flow and chemistry in two lowland N‐rich streams in southern Ontario, Canada. Nitrate concentrations were relatively high, ranging from 0.5 to 1.3 mg N/l in both streams during spring through fall months. However, nitrate concentrations showed a steep decline as stream water entered the gravel bar and the meander bends. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that 40‐100 and 68‐98% of the nitrate entering the hyporheic zone was removed in the gravel bar and meanders, respectively. Rapid depletion of dissolved oxygen concentrations along lateral hyporheic flow paths and denitrifying potentials assayed by the acetylene block technique in hyporheic sediments suggests that denitrification was an important mechanism of nitrate depletion. Despite the high rate of nitrate removal, the flux of stream water laterally entering the constructed gravel bar and meander bends was very small, and hyporheic nitrate removal was <0.015% of the daily stream load during base‐flow periods in summer and fall. The effects of restoration projects on hyporheic zone dynamics are often limited in lowland streams by low channel gradients and fine floodplain sediments with low interstitial flows that restrict the magnitude of the stream‐hyporheic connection.  相似文献   

9.
Walton‐Day, Katherine, Robert L. Runkel, and Briant A. Kimball, 2012. Using Spatially Detailed Water‐Quality Data and Solute‐Transport Modeling to Support Total Maximum Daily Load Development. Journal of the American Water Resources Association (JAWRA) 48(5): 949‐969. DOI: 10.1111/j.1752‐1688.2012.00662.x Abstract: Spatially detailed mass‐loading studies and solute‐transport modeling using OTIS (One‐dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass‐loading data collected during low‐flow from Cement Creek (a low‐pH, metal‐rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL‐recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53‐63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse‐source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse‐source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.  相似文献   

10.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

11.
The two‐stage ditch is a novel management practice originally implemented to increase bank stability through floodplain restoration in channelized agricultural streams. To determine the effects of two‐stage construction on sediment and nutrient loads, we monitored turbidity, and also measured total suspended solids (TSS), dissolved inorganic nitrogen (N) species, and phosphorus (P) after two‐stage ditch construction in reference and manipulated reaches of four streams. Turbidity decreased during floodplain inundation at all sites, but TSS and P, soluble reactive phosphorus (SRP) and total phosphorus (TP) decreased only in the two‐stage ditches with longer duration of inundation. Both TSS and TP were positively correlated within individual streams, but neither were correlated with turbidity. Phosphorus was elevated in the stream to which manure was applied adjacent to the two‐stage reach, but not the reference reach, suggesting that landscape nutrient management plans could restrict nutrient transport to the stream, ultimately determining the efficacy of instream management practices. In addition, ammonium and nitrate decreased in two‐stage reaches with lower initial N concentrations. Overall, results suggest that turbidity, TSS, and TP were reduced during floodplain inundation, but the two‐stage alone may not be effective for managing high inorganic N loads.  相似文献   

12.
Abstract: Natural channel designs often incorporate rigid instream structures to protect channel banks, provide grade control, promote flow deflection, or otherwise improve channel stability. The long term impact of rigid structures on natural stream processes is relatively unknown. The objective of this study was to use long term alluvial channel modeling to evaluate the effect of rigid structures on channel processes and assess current and future stream channel stability. The study was conducted on Oliver Run, a small stream in Pennsylvania relocated due to highway construction. Field data were collected for one year along the 107 m reach to characterize the stream and provide model input, calibration, and verification data. FLUVIAL-12 was used to evaluate the long term impacts of rigid structures on natural channel adjustment, overall channel stability, and changing form and processes. Based on a consideration of model limitations and results, it was concluded that the presence of rigid structures reduced channel width-to-depth ratios, minimized bed elevation changes due to long term aggradation and degradation, limited lateral channel migration, and increased the mean bed material particle size throughout the reach. Results also showed how alluvial channel modeling can be used to improve the stream restoration design effort.  相似文献   

13.
Densmore, Roseann V. and Kenneth F. Karle, 2009. Flood Effects on an Alaskan Stream Restoration Project: The Value of Long‐Term Monitoring. Journal of the American Water Resources Association (JAWRA) 45(6):1424‐1433. Abstract: On a nationwide basis, few stream restoration projects have long‐term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long‐term and event‐based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long‐term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross‐sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25‐year flood on the stream and floodplain geometry and riparian vegetation. The long‐term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.  相似文献   

14.
The exemption for groundwater wells for residential uses from the prior appropriations system, common in the western United States, has eroded in Washington State since about 2000 due to a series of legal cases. Water markets can allow the transfer of an existing water right, typically from an agricultural use, to compensate for the effect of a new residential well. But water must be legally and physically available in a way suitable to satisfy mitigation requirements. A recent court case in the Skagit basin in Northwestern Washington State has effectively halted residential development in rural areas of the basin because no suitable water rights are available to purchase for mitigation. This paper presents and examines the cost‐effectiveness of various water supply mitigation strategies. We find a small‐scale, distributed stream‐side storage system for augmenting instream flow purchased from downstream sources is relatively cost‐effective to mitigate against the effects of domestic groundwater use compared to more common alternatives. We consider transporting water to storage sites by both small‐gauge pipe and by truck. Overall, trucking water to stream‐side storage and release points tends to be more cost‐effective to mitigate against indoor‐use only given current subbasin housing densities, whereas piping for direct streamflow augmentation is more cost‐effective for higher mitigation needs associated with indoor and outdoor use and higher housing densities.  相似文献   

15.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

16.
Abstract: Over the past 10 years the Rosgen classification system and its associated methods of “natural channel design” have become synonymous to some with the term “stream restoration” and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely adopted by governmental agencies, particularly those funding restoration projects. The purposes of this article are to present a critical review, highlight inconsistencies and identify technical problems of Rosgen’s “natural channel design” approach to stream restoration. This paper’s primary thesis is that alluvial streams are open systems that adjust to altered inputs of energy and materials, and that a form‐based system largely ignores this critical component. Problems with the use of the classification are encountered with identifying bankfull dimensions, particularly in incising channels and with the mixing of bed and bank sediment into a single population. Its use for engineering design and restoration may be flawed by ignoring some processes governed by force and resistance, and the imbalance between sediment supply and transporting power in unstable systems. An example of how C5 channels composed of different bank sediments adjust differently and to different equilibrium morphologies in response to an identical disturbance is shown. This contradicts the fundamental underpinning of “natural channel design” and the “reference‐reach approach.” The Rosgen classification is probably best applied as a communication tool to describe channel form but, in combination with “natural channel design” techniques, are not diagnostic of how to mitigate channel instability or predict equilibrium morphologies. For this, physically based, mechanistic approaches that rely on quantifying the driving and resisting forces that control active processes and ultimate channel morphology are better suited as the physics of erosion, transport, and deposition are the same regardless of the hydro‐physiographic province or stream type because of the uniformity of physical laws.  相似文献   

17.
One central issue affecting the health of native fish species in the Pacific Northwest is water temperature. In situ observation methods monitor point temperatures, while thermal infrared (TIR) remote sensing captures spatial variations. Satellite‐based TIR sensors have the ability to view large regions in an instant. Four Pacific Northwest river reaches were selected to test the ability of both satellite‐based and moderate resolution aircraft‐based TIR remote sensing products to measure river temperatures. Images with resolutions of 5, 15, and 90 meters were compared with instream temperature observations to assess how along stream radiant temperatures are affected by resolution, reach width, and sensor platform. Where the stream reach can be resolved by the sensor, all sensors obtain water temperatures within ±2°C of instream observations. Along stream temperature variations of up to ±5°C were also observed. Trends were similar between two sets of TIR images taken several hours apart, indicating that the sensors are observing actual temperature patterns from the river surface. If sensor resolution is sufficient to obtain fully resolved water pixels in the river reach, accurate temperatures and spatial patterns can be observed. The current generation of satellite‐based TIR sensors is, however, only able to resolve about 6 percent of all Washington reaches listed as thermally impaired.  相似文献   

18.
ABSTRACT: Rosgen analysis, developed for assessing channel stability in streams from the western United States, is applied to the Oswego River watershed in the New Jersey Pine Barrens. The Rosgen method requires calibration to local conditions due to the impact of peat substrates on channel morphology. In particular, the presence of peat induces low width to depth ratios and greater channel confinement, reversing typical downstream morphologic trends observed in other rivers. Therefore peat is added to those substrates already evaluated by Rosgen. A consistent sequence of Rosgen stream types develops along the Oswego River and its tributaries created by spatially overlapping processes of water table emergence, peat development, and channel formation. This sequence delineates a “natural” transition of stream channel morphology downslope through the watershed. First, as the water table reaches the surface of dry sloughs, Sphagnum growth is stimulated and peat substrates result. These substrates have lower permeability than the underlying gravelly sands. Next, surface runoff, through braided pathways over the peat, eventually erodes mainly anastomosing channels into the peat. Finally, single‐thread channels develop in underlying gravelly sands further downslope. This downslope sequence, expressed as Rosgen stream types, begins generally with DA7 streams arising from dry sloughs. These pass to E7, C7 or DA5 stream types that in turn pass to B5c, C5 and C4 stream types. Departures from the “natural” stream type sequence occur along the course of the Oswego and its tributaries due to human activities such as the construction of dams, bridges and drainage ditches, stream bank erosion at streamside camping and picnic areas and the clear‐cutting of adjacent stands of Atlantic white cedar.  相似文献   

19.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Agricultural drainage ditches function to remove water quickly from farmed landscapes. Conventional ditch designs lack the form and function of natural stream systems and tend to be unstable and provide inadequate habitat. In October of 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to an alternative system with a two‐stage channel to investigate the improvements in water quality, stability, and habitat. Longitudinal surveys show a 12‐fold increase in the pool‐riffle formation. Cross‐sectional surveys show an average increase in bankfull width of approximately 10% and may be associated to an increased frequency in large storm events. The average increase in bankfull depth was estimated as 18% but is largely influenced by pool formation. Rosgen Stability Analyses show the channel to be highly stable and the banks at a low risk of erosion. The average bankfull recurrence interval was estimated to be approximately 0.30 years. Overall, the two‐stage ditch design demonstrates an increase in fluvial stability, creating a more consistent sediment budget, and increasing the frequency of important instream habitat features, making this best management practice a viable option for addressing issues of erosion, sediment imbalance, and poor habitat in agricultural drainage systems.  相似文献   

20.
Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Minnesota, a basin that exemplifies conditions limiting coldwater species survival along Lake Superior's North Shore where shallow bedrock limits groundwater capacity, lowering baseflows and increasing temperatures. Groundwater‐fed reaches were identified through synoptic isotope sampling, with results highlighting the importance of isolated shallow surficial aquifers (glacially derived sands and gravels) for providing cold baseflow waters. In an alluvial reach, monitoring well results show groundwater was stored in two reservoirs: one that reacts quickly to changes in stream levels, and one that remained isotopically isolated under most flow conditions, but which helps sustain summer baseflows for weeks to months. A 500‐year flood demonstrated the capacity of high‐flow events to alter surface water–groundwater connectivity. The previously isolated reservoir was exchanged or mixed during the flood pulse, while incision lowered the water table for years. The results here provide insight for streams that lack substantial groundwater inputs yet maintain coldwater species at risk in a warming climate and an approach for managers seeking to protect cold baseflow sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号