首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper reports the bioaccumulation of three PCBs (2,4′-dichlorobiphenyl, 2,4,6,2′-tetrachlorobiphenyl and 2,4,6,2′,4′-pentachlorobiphenyl) by the green alga Chlorellafusca under various conditions. A probable pattern of the bioconcentration mechanism is suggested. No metabolites were extracted from algae or water 6 days after incubation with PCBs.  相似文献   

2.
The metabolism of 4,4′-dichlorobiphenyl by mixed cultures of bacteria, isolated from activated sludge, was studied in shake cultures and in soil, both in presence and absence of alternative carbon sources. When 4,4′-dichlorobiphenyl was used as sole carbon source, 4-chlorobenzoic acid and 4,4′-dichloro-2,3-biphenyldiol could be isolated from the culture medium. Polar metabolites however, could not be detected in soil and in media in which alternative carbon sources such as glucose, glycerol, peptone, yeast-extract, humic acid or activated sludge were present. No hydroxylated or carboxylic acid derivatives could be isolated when 2,4′, 5-tri-, 2,2′,5,5′,-textra-, 2,2′,3,4,5′-penta-, 2,2′,3,4,5,5′-hexa- and decachlorobiphenyl were used as the sole carbon sources for incubation with bacteria in shake culture.  相似文献   

3.
Rezek J  Macek T  Doubsky J  Mackova M 《Chemosphere》2012,89(4):383-388
The hairy root culture of black nightshade (Solanum nigrum) SNC-9O was exposed to 2,2′-dichlorobiphenyl (PCB 4) and 2,6-dichlorobiphenyl (PCB 10) to follow the metabolites produced. The analytical standards of 4-hydroxy-2,2′-dichlorobiphenyl, 5′-hydroxy-2,2′-dichlorobiphenyl, 4-hydroxy-2,6-dichlorobiphenyl, 2-hydroxy-2′,6′-dichlorobiphenyl, 3-hydroxy-2′,6′-dichlorobiphenyl and 4-hydroxy-2′,6′-dichlorobiphenyl have been synthesized. Hydroxy-metabolites of both PCB 4 and PCB 10 were present in the biomass. These appeared mainly as conjugates rather than as free hydroxy-PCBs, both maintained in plant cells. The concentrations of non-conjugated hydroxy-PCBs ranged between 0.9 and 35.2 μg kg−1 of biomass fresh weight and the concentration of the conjugated ones ranged between 2.0 and 113.0 μg kg−1 depending on the position of hydroxyl. The para- position of biphenyl (4 or 4′) seems to be preferred for hydroxylation. Methoxy-PCBs and hydroxy-methoxy-PCBs have also been identified in plant cells. Hydroxyl in the meta-position (3, 3′, 5 or 5′) appears to be preferred for methylation in hydroxy-PCBs. Hydroxy-methoxy-PCBs have occurred in the conjugated form as well.  相似文献   

4.
The preparation of 14C-labelled biphenyl, 2,5-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl, 2,2′,4,5′-tetrachlorobiphenyl, 2′,3,4,4′,5-pentachlorobiphenyl, 2,2′,3,4,4′-pentachlorobiphenyl, 2,3,3′,4′,6-pentachlorobiphenyl and 2,2′,3,3′,6-pentachlorobiphenyl is described [14C]Aniline hydrogen sulfate used as a starting material was acetylated, chlorinated and deacetylated followed by coupling to benzene or an appropriate chlorobenzene to give the biphenyls labelled in the phenyl nuclei having chlorine atoms at the 4-, 2,4- or 2,3,6-positions, respectively. The structures of the labelled compounds were established by comparison with authentic samples among which 2′,3,4,4′,5- and 2,2′,3,4,4′-pentachlorobiphenyl were not earlier described.A simple method for the preparation of 2,3,6-trichloroacetanilide, unlabelled and labelled, was worked out. 2,6-Dichloroacetanilide in concentrated hydrochloric acid gave the meta substituted product when treated with chlorine.An improved thin layer chromatographic technique utilizing plates impregnated with certain tetraalkylammonium salts was used for separation of some of the labelled compounds prepared.  相似文献   

5.
Rats were given single oral doses of 2-chloro-, 2,8-dichloro-, 2,3,8-trichloro- and octachloro-dibenzofuran. Urine, faeces, fat and liver were analysed for starting materials and metabolites. The mono-, di- and trichlorodibenzofurans yielded mono- and dihydroxy derivatives, but metabolites containing sulphur were detected only with the mono- and dichlorodibenzofuran.Contrary to the chlorodibenzo-p-dioxins, where hydroxylated metabolites with substitution only at the 2,3-positions were isolated, chlorodibenzofuran-metabolites show a wider substitution pattern; five monohydroxy-derivatives were found, for instance, from 2,8-dichlorodibenzofuran.No metabolites were detected in urine, faeces and tissues of rats which were fed with octachlorodibenzofuran.  相似文献   

6.
Five 14C-labelled polychlorinated biphenyls: 2,4′,5-trichlorobiphenyl, 2,2′,4,5′-tetrachlorobiphenyl, 2,2′,4,5,5′-pentachlorobiphenyl, 2,2′,3,4,4′-pentachlorobiphenyl and 2,2′,4,4′,5,5′-hexachlorobiphenyl were administered orally to bile-cannulated rats. The activity secreted in the bile, excreted in the feces and the urine was determined. Residues of radioactivity in certain tissues and the carcass were also measured.The trichlorobiphenyl showed the highest absorption (93.8%±5.4) from the gastrointestinal tract and biliary secretion of radioactivity (87.6%±6.1 of the dose). The hexachlorobiphenyl showed the lowest absorption and biliary secretion, 28.2%±1.4 and 18.6%±1.3, respectively. The urinary excretion was low and the radioactive residues in the eviscerated carcasses increased with the chlorine content of the biphenyls.  相似文献   

7.
The hydrodechlorination (HDCl) process of 2,3-, 2,4- and 2,5-dichlorobiphenyls was studied over a sulphided Ni-Mo/Al(2)O(3) catalyst in a stirred autoclave at a hydrogen pressure of 3 MPa. The catalysts were prepared by spray-drying. They were characterized by N(2) adsorption, thermogravimetry and scanning electron microscopy with X-ray microanalysis. The reaction temperature of the catalytic HDCl process was varied in the range of 230-290 degrees C. Polychlorinated biphenyls (PCBs) free transformer oil was used as reaction medium. The HDCl degree of dichlorobiphenyl isomers was in the range of 82-93%. The efficiency in the chlorine removal was found to be related to the position of the substituted chlorine atom and decreased as follows 2,4-dichlorobiphenyl approximately 2,5-dichlorobiphenyl>2,3-dichlorobiphenyl. For comparison, the HDCl process of 2,3-dichlorobiphenyl (2,3-PCB) without catalyst was also studied. The chlorine removal was 85% for the catalytic HDCl of 2,3-PCB whereas non-catalytic process led only to 16% of dechlorination in the same operating conditions, i.e. at 290 degrees C after 120 min. Monodichlorobiphenyls were not detected in the reaction products. The data for both catalytic and non-catalytic conversion of 2,3-PCB fit to a first-order model. Kinetic constants and the activation energy of the overall HDCl reaction of 2,3-PCB to biphenyl were evaluated. Compared to non-catalytic process, a nearly threefold decrease in the activation energy was observed in the presence of Ni-Mo/Al(2)O(3) catalyst prepared by spray-drying (48 kJ mol(-1) vs. 124 kJ mol(-1)).  相似文献   

8.
Bioaccumulation kinetics of five di-, tri- and tetrachlorobiphenyls from water and food were studied in laboratory experiments with goldfish (Carassius auratus). First order rate constants for uptake from water and clearance were determined after simultaneous administration of the five compounds in constant concentration, and were related to bioconcentration factors obtained in a static fish-water equilibration system. Biomagnification by retention of the PCB's from food was studied in a separate experiment.The difference in clearance rates for the chlorobiphenyls is the main reason for the different bioconcentration and biomagnification factors.Absorption efficiencies from water and food are higher than 40%. Clearance half lives vary from 10 days for 2,5-dichlorobiphenyl to 60 days for 2,3′,4′5-tetrachlorobiphenyl, which is correlalated with the decreasing aqueous solubilities of the compounds. Bioconcentration factors are between 0.4 × 106 and 1.5 × 106, biomagnification factors between 0.2 and 1.7, based on extractable lipids. Substitution of chlorine in the position para to the phenyl-phenyl bond influences hydrophobicity and bioaccumulation of the PCB's more strongly than substitution in ortho position.A kinetic model is developed which accounts for the influence of the lipid content of the fish on the clearance rate of a chemical. Reproducible determination of the bioconcentration potential of environmental chemicals is possible by use of an “internal bioaccumulation standard” in a kinetic test system. Food chain accumulation in fish is likely to be an important process only for persistent chemicals with extremely low water solubility.  相似文献   

9.
Abstract

The biotransformation of the nonylphenol isomer [ring-U-14C]-4-(3′,5′-dimethyl-3′-heptyl)-phenol (4-353-NP, consisting of two diastereomers) was studied in soybean and Agrostemma githago cell suspension cultures. With the A. githago cells, a batch two-liquid-phase system (medium/n-hexadecane 200:1, v/v) was used, in order to produce higher concentrations and amounts of 4-353-NP metabolites for their identification; 4-353-NP was applied via the n-hexadecane phase. Initial concentrations of [14C]-4-353-NP were 1 mg L?1 (soybean), and 5 and 10 mg L?1 (A. githago). After 2 (soybean) and 7 days (A. githago) of incubation, the applied 4-353-NP was transformed almost completely by both plant species to four types of products: glycosides of parent 4-353-NP, glycosides of primary 4-353-NP metabolites, nonextractable residues and unknown, possibly polymeric materials detected in the media. The latter two products emerged especially in soybean cultures. Portions of primary metabolites amounted to 19–22% (soybean) and 21–42% of applied 14C (A. githago). After liberation from their glycosides, the primary 4-353-NP metabolites formed by A. githago were isolated by HPLC and examined by GC-EIMS as trimethylsilyl derivatives. In the chromatograms, eight peaks were detected which due to their mass spectra, could be traced back to 4-353-NP. Seven of the compounds were side-chain monohydroxylated 4-353-NP metabolites, while the remaining was a (side-chain) carboxylic acid derivative. Unequivocal identification of the sites of hydroxylation/oxidation of all transformation products was not possible. The main primary metabolites produced by A. githago were supposed to be four diastereomers of 6′-hydroxy-4-353-NP (about 80% of all products identified). It was concluded that plants contribute to the environmental degradation of the xenoestrogen nonylphenol; the toxicological properties of side-chain hydroxylated nonylphenols remain to be examined.  相似文献   

10.
Canola plants were treated with 14C- prohiofos under conditions simulating local agricultural practices. 14C-residues in seeds were determined at different time intervals. At harvest time about 32 % of 14C-activity was associated with oil. The methanol soluble 14C-residues accounted for 12 % of the total seed residues after further seeds extraction, while the cake contained about 49 % of the total residues. About 69 % of the 14C-activity in the crude oil could be eliminated by simulated commercial processes locally used for oil refining. Chromatographic analysis of crude and refined oil revealed the presence of the parent compound together with three metabolites which were identified as prothiofos oxon, O-ethyl phosphorothioate and O-ethyl S-propyl phosphorothioate, besides one unknown compound. While methanol extract revealed the presence of despropylthio prothiofos and O-ethyl phosphoric acid as free metabolites acid hydrolysis of the conjugated metabolites in the methanol extract yielded 2, 4-dichlorophenole which was detected by color. When rats were fed the extracted cake for 72 hours, the bound residues were found to be bioavailable. The main excretion route was via the expired air (42 %), while the 14C-residues excreted in urine and feces were 30 % and 11 %, respectively. The radioactivity detected among various organs accounted to 7.5 %.Chromatographic analysis of urine indicated the presence of prothiofos oxon, O-ethyl phosphoric acid and 2, 4-dichlorophenole as main degradation products of prothiofos in free and conjugated form.  相似文献   

11.
Wemcol is a technical isopropylbiphenyl formulation that is used as a substitute for polychlorobiphenyl. According to the producer Wemcol is 4-isopropylbiphenyl, but we found our sample to consist of 60.3% 3-isopropylbiphenyl, 38.6% 4-isopropylbiphenyl and 3,5-, 3,3′-, 3,4′- and 4,4′-diisopropylbiphenyl in amounts of 0.3%, 0.4%, 0.2% and 0.1% respectively. The two major components of the mixture are metabolized in the rat by two routes : oxidation of the isopropyl group and hydroxylation of the aromatic nuclei. Rats fed the technical mixture retained 3- and 4-isopropylbiphenyl in a ratio 4.3 : 1 in their abdominal fat, whilst the ratio in the mixture is 1.6 : 1. One week after the simultaneous feeding of equal amounts of Wemcol, 4,4′-dichlorobiphenyl, 2,4′,5-trichlorobiphenyl and 2,2′,5,5′-tetrachlorobiphenyl, the isopropylbiphenyls, in contrast to the chlorobiphenyls, could no longer be detected in the abdominal fat of rats.  相似文献   

12.
The polychlorinated biphenyl (PCB)-degrading bacterium, Burkholderia xenovorans LB400, was capable of transforming three hydroxylated derivatives of 2,5-dichlorobiphenyl (2,5-DCB) (2′-hydroxy- (2′-OH-), 3′-OH-, and 4′-OH-2,5-DCB) when biphenyl was used as the carbon source (i.e., biphenyl pathway-inducing condition), although only 2′-OH-2,5-DCB was transformed when the bacterium was growing on succinate (i.e., condition non-inductive of the biphenyl pathway). On the contrary, hydroyxlated derivatives of 2,4,6-trichlorobiphenyl (2,4,6-TCB) (2′-OH-, 3′-OH-, and 4′-OH-2,4,6-TCB) were not significantly transformed by B. xenovorans LB400, regardless of the carbon source used. Gene expression analyses showed a clear correlation between the transformation of OH-2,5-DCBs and expression of genes of the biphenyl pathway. The PCB metabolite, 2,5-dichlorobenzoic acid (2,5-DCBA), was produced following the transformation of OH-2,5-DCBs. 2,5-DCBA was not further transformed by B. xenovorans LB400. The present study is significant because it provides evidence that PCB-degrading bacteria are capable of transforming hydroxylated derivatives of PCBs, which are increasingly considered as a new class of environmental contaminants.  相似文献   

13.
ABSTRACT

Persistent organic pollutants (POPs) are known to show endocrine disrupting (ED) activity, including interactions with hormone receptors. The aim of this work was to develop a bioassay applicable for evaluation of ED potency of highly lipophilic metabolites of POPs. To that end, a yeast-based bio-assay protocol was used. Estrogenic / androgenic activity of some native brominated biphenyl ethers (BDEs) / chlorinated biphenyls (CBs), and their hydroxylated / methoxylated metabolites was assessed. Since data (including potency compared to reference native hormones) obtained using different protocols vary, the possibility that yeast transforms POPs into some more potent compounds was first checked; it seems that no such transformation is important from the test applicability standpoint. The developed method was sensitive with EC50 values 6.5*10?11 M and 4.5*10?9 M calculated for E2 and DHT, respectively. Both CBs and BDEs show weak estrogenic activity negatively correlated with the degree of their halogenation, but their metabolites are significantly more potent xenohormones. 4-OH-2,2′,4′,6′-TeCB was the most potent estrogen receptor (ER) agonist among all tested compounds; its activity was only 1,000 times lower than that of native E2.  相似文献   

14.
Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L−1). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L−1) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63 × 10−3 ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20 × 10−3 ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB + DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.  相似文献   

15.
The metabolism of 4,4′-dichlorobiphenyl in the rat has been investigated in detail and four monohydroxy-, four dihydroxy- and two trihydroxy metabolites were detected. The structures of the metabolites - except for the trihydroxy compounds - were ascertained by GC-MS studies and by comparison with synthetic compounds. Metabolism experiments in frog resulted in the isolation and characterisation of four metabolites. The structure of the major metabolites in both the rat and the frog are consistent with epoxidation of the biphenyl nucleus followed by epoxide ring opening accompanied by a 1,2-chlorine shift (NIH-shift). The formation of one minor rat metabolite, 4-chloro-3t́-biphenylol can only be explained by reductive dechlorination.  相似文献   

16.
The goal of the present study was to investigate the feasibility of silicon dioxide (SiO2) microspheres without special modification to enrich dichlorodiphenyltrichloroethane (DDT) and its main metabolites, p,p′-dichlorodiphenyl-2,2-dichloroethylene (p,p′-DDD) and p,p′-dichlorodiphenyldichloroethylene (DDE) in combination with gas chromatography-electron-capture detection. The experimental results indicated that an excellent linear relationship between the recoveries and the concentrations of DDT and its main metabolites was obtained in the range of 0.2–30 ng mL?1 and the correlation coefficients were in the range of 99.96–99.99%. The detection limits based on the ratio of signal to the baseline noise (S/N = 3) were 2.2, 2.9, 3.8 and 4.1 ng L?1 for p,p′-DDD, p,p′-DDT, o,p′-DDT, and p,p′-DDE, respectively. The precisions of the proposed method were all below 10% (n = 6). Four real water samples were utilized for validation of the proposed method, and satisfactory spiked recoveries in the range of 72.4–112.9% were achieved. These results demonstrated that the developed method was a simple, sensitive, and robust analytical method for the monitoring of pollutants in the environment.  相似文献   

17.

Background and purposes

The pathways used by microorganisms for the metabolism of every xenobiotic substrate are specific. The catabolism of a xenobiotic goes through a series of intermediate steps and lower intermediates (metabolites) appear in sequence. The structure of the metabolites can be similar to the parents due to kinship. The purposes of this study were to examine if the degradation pathways that were developed for a parent xenobiotic are effective to degrade the parent??s lower metabolites, and if the reverse is true.

Materials and methods

The xenobiotic substrates, 2,4-dichlorophenoxyacetic acid (2,4-D, the parent xenobiotic) and its metabolite 2,4-dichlorophenol (2,4-DCP), were independently subjected to acclimation and degradation tests by the biomasses of mixed-culture activated sludge and a pure culture of Arthrobacter sp.

Results

Activated sludge and Arthrobacter sp. that were acclimated to 2,4-D effectively degraded 2,4-D and the lower metabolites of 2,4-D, typically 2,4-DCP. During the degradation of 2,4-D, accumulations of the lower metabolites of 2,4-D were not found. The degradation pathways acquired from acclimation to 2,4-D are effective for all the metabolites of 2,4-D. However, pathways acquired from acclimation to 2,4-DCP are not effective in the degradation of the parent 2,4-D.

Conclusions

Microorganisms acclimated to 2,4-D evolve their degradation pathways by a scheme that is different from the scheme the microorganisms employ when they are acclimated to the metabolites of 2,4-D.  相似文献   

18.
Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21 d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied 14C in soil samples and from 0.0% to 2.4% of applied 14C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26 h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31 h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied 14C remained extractable during the experiment and, after 21 d, less than 15% of applied 14C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied 14C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole.  相似文献   

19.
Organochlorine pesticides were determined in water and sediment samples collected from the littoral zone of Lake Prespa, as well as from its three main tributaries (the rivers Golema, Brajcinska and Kranska), during the period 2004 to 2006. In addition, muscle tissue samples of barbus fish (Barbus prespensis Karaman, 1928) collected from the littoral zone of Lake Prespa were also analysed. The obtained results give an overview of the contamination levels of these problematic compounds at their potential sources in the river mouths, in the potentially affected, species-rich littoral section of the lake and in the muscle tissue of one selected fish species, collected near the rivers’ deltas. Special attention was paid to the presence of some DDT metabolites (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p′–DDE); (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (p,p′–DDD) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′–DDT). The extraction of pesticides from water samples was done by liquid-liquid partition in dichloromethane. For the sediment and fish tissue we used solid-liquid extraction. The extracted residues were analyzed on a gas chromatograph equipped with an electron capture detector (GC-ECD). The results of the respective studies indicated the presence of DDT metabolic forms in the samples of the three analysed matrixes. The highest levels of presence for these pollutants were found in the muscle tissue of the fish samples. The total DDTs content in the analysed muscle tissue samples range from 11.67 to 13.58 μg kg?1of fresh tissue. The average total DDTs content for the sediment samples were within the range of 2.32 to 4.17 μg kg?1 of dry sediment. Higher DDT metabolites content were found in the sediments collected from the rivers than in the samples from the littoral zone. The lowest average total concentrations of DDTs, on the other hand, were recorded in the water samples and ranged between 0.036 and 0.057 μg L?1. The obtained results indicated that the dominant metabolic form in the samples of the three investigated matrixes (water, sediment and fish tissue) from Lake Prespa was p,p′-DDE. There was a very good linear correlation in this study between the content of DDT's (total DDT metabolites) detected and the percentage of total organic material in the sediment. The detected concentrations are clearly below the toxicity thresholds; consequently, severe effects on the endemic species of Lake Prespa are not very likely.  相似文献   

20.
A solvent tolerant bacterium Serratia marcescens NCIM 2919 has been evaluated for degradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane). The bacterium was able to degrade up to 42% of initial 50 mg L?1 of DDT within 10 days of incubation. The highlight of the work was the elucidation of DDT degradation pathway in S. marcescens. A total of four intermediates metabolites viz. 2,2-bis (chlorophenyl)-1,1-dichloroethane (DDD), 2,2-bis (chlorophenyl)-1,1-dichloroethylene (DDE), 2,2-bis (chlorophenyl)-1-chloroethylene (DDMU), and 4-chlorobenzoic acid (4-CBA) were identified by GC-Mass and FTIR. 4-CBA was found to be the stable product of DDT degradation. Metabolites preceding 4-CBA were not toxic to strain as reveled through luxuriant growth in presence of varying concentrations of exogenous DDD and DDE. However, 4-CBA was observed to inhibit the growth of bacterium. The DDT degrading efficiency of S. marcescens NCIM 2919 hence could be used in combination with 4-CBA utilizing strains either as binary culture or consortia for mineralization of DDT. Application of S. marcescens NCIM 2919 to DDT contaminated soil, showed 74.7% reduction of initial 12.0 mg kg?1 of DDT after 18-days of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号