首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

2.
Boggs, Johnny, Ge Sun, David Jones, and Steven G. McNulty, 2012. Effect of Soils on Water Quantity and Quality in Piedmont Forested Headwater Watersheds of North Carolina. Journal of the American Water Resources Association (JAWRA) 1‐19. DOI: 10.1111/jawr.12001 Abstract: Water quantity and quality data were compared from six headwater watersheds on two distinct soil formations, Carolina Slate Belt (CSB) and Triassic Basins (TB). CSB soils are generally thicker, less erodible, and contain less clay content than soils found in TB. TB generated significantly more discharge/precipitation ratio than CSB (0.33 vs. 0.24) in the 2009 dormant season. In the 2009 growing season, TB generated significantly less discharge/precipitation ratio than CSB (0.02 vs. 0.07). Over the entire monitoring period, differences in discharge/precipitation ratios between CSB and TB were not significantly different (0.17 vs. 0.20, respectively). Storm‐flow rates were significantly higher in TB than CSB in both dormant and growing season. Benthic macroinvertebrate biotic index scores were excellent for all streams. Nutrient concentrations and exports in CSB and TB were within background levels for forests. Low‐stream nitrate and ammonium concentrations and exports suggested that both CSB and TB were nitrogen limited. Soils appear to have had a significant influence on seasonal and storm‐flow generation, but not on long‐term total water yield and water quality under forested conditions. This study indicated that watersheds on TB soils might be more prone to storm‐flow generation than on CSB soils when converted from forest to urban. Future urban growth in the area should consider differences in baseline hydrology and effects of landuse change on water quantity and quality.  相似文献   

3.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

4.
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.  相似文献   

5.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

6.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   

7.
This study analyzed changes in hydrology between two recent decades (1980s and 2010s) with the Soil and Water Assessment Tool (SWAT) in three representative watersheds in South Dakota: Bad River, Skunk Creek, and Upper Big Sioux River watersheds. Two SWAT models were created over two discrete time periods (1981‐1990 and 2005‐2014) for each watershed. National Land Cover Datasets 1992 and 2011 were, respectively, ingested into 1981‐1990 and 2005‐2014 models, along with corresponding weather data, to enable comparison of annual and seasonal runoff, soil water content, evapotranspiration (ET), water yield, and percolation between these two decades. Simulation results based on the calibrated models showed that surface runoff, soil water content, water yield, and percolation increased in all three watersheds. Elevated ET was also apparent, except in Skunk Creek watershed. Differences in annual water balance components appeared to follow changes in land use more closely than variation in precipitation amounts, although seasonal variation in precipitation was reflected in seasonal surface runoff. Subbasin‐scale spatial analyses revealed noticeable increases in water balance components mostly in downstream parts of Bad River and Skunk Creek watersheds, and the western part of Upper Big Sioux River watershed. Results presented in this study provide some insight into recent changes in hydrological processes in South Dakota watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

8.
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds.  相似文献   

9.
The southeastern United States has undergone anthropogenic changes in landscape structure, with the potential to increase (e.g., urbanization) and decrease (e.g., reservoir construction) stream flashiness and flooding. Assessment of the outcome of such change can provide insight into the efficacy of current strategies and policies to manage water resources. We (1) examined trends in precipitation, floods, and stream flashiness and (2) assessed the relative influence of land cover and flow‐regulating features (e.g., best management practices and artificial water bodies) on stream flashiness from 1991 to 2013. We found mean annual precipitation decreased, which coincided with decreasing trends in floods. In contrast, stream flashiness, overall, showed an increasing trend during the period of study. However, upon closer examination, 20 watersheds showed stable stream flashiness, whereas 5 increased and 6 decreased in flashiness. Urban watersheds were among those that increased or decreased in flashiness. Watersheds that increased in stream flashiness gained more urban cover, lost more forested cover and had fewer best management practices installed than urban watersheds that decreased in stream flashiness. We found best management practices are more effective than artificial water bodies in regulating flashy floods. Flashiness index is a valuable and straightforward metric to characterize changes in streamflow and help to assess the efficacy of management interventions.  相似文献   

10.
Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.  相似文献   

11.
Long‐term simulations of agricultural watersheds have often been done assuming constant land use over time, but this is not a realistic assumption for many agricultural regions. This paper presents the soil and water assessment tool (SWAT)‐Landuse Update Tool (LUT), a standalone, user‐friendly desktop‐based tool for updating land use in the SWAT model that allows users to process multi‐year land use data. SWAT‐LUT is compatible with several SWAT model interfaces, provides users with several options to easily prepare and incorporate land use changes (LUCs) over a simulation period, and allows users to incorporate past or emerging land use categories. Incorporation of LUCs is expected to provide realistic model parameterization and scenario simulations. SWAT‐LUT is a public domain interface written in Python programming language. Two applications at the Fort Cobb Reservoir Experimental Watershed located in Oklahoma and pertinent results are provided to demonstrate its use. Incorporating LUCs related to implementation of recommended conservation practices over the years reduced discharge, evapotranspiration, sediment, total nitrogen, and total phosphorus loads by 59%, 9%, 68%, 53%, and 88%, respectively. The user’s manual is included in this article as Supporting Information. The SWAT‐LUT executable file and an example SWAT project with three land use rasters and the user’s manual are available at the United States Department of Agriculture‐Agricultural Research Service Grazinglands Research Laboratory website under Software. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

12.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

13.
Regional curves are empirical relationships that can help identify the bankfull stage in ungaged watersheds and aid in designing the riffle dimension in stream restoration projects. Bankfull regional curves were developed from gage stations with drainage areas less than 102 mi2 (264.2 km2) for the Alleghany Plateau/Valley and Ridge (AP/VR), Piedmont, and Coastal Plain regions of Maryland. The AP/VR regions were combined into one region for this project. These curves relate bankfull discharge, cross‐sectional area, width, and mean depth to drainage area within the same hydro‐physiographic region (region with similar rainfall/runoff relationship). The bankfull discharge curve for the Coastal Plain region was further subdivided into the Western Coastal Plain (WCP) and Eastern Coastal Plain (ECP) region due to differences in topography and runoff. Results show that the Maryland Piedmont yields the highest bankfull discharge rate per unit drainage area, followed by the AP/VR, WCP, and ECP. Likewise, the Coastal Plain and AP/VR streams have less bankfull cross‐sectional area per unit drainage area than the Piedmont. The average bankfull discharge return interval across the three hydro‐physiographic regions was 1.4 years. The Maryland regional curves were compared to other curves in the eastern United States. The average bankfull discharge return interval for the other studies ranged from 1.1 to 1.8 years.  相似文献   

14.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

15.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

16.
ABSTRACT: We measured the base‐flow stream chemistry in all the major physiographic provinces of the Chesapeake Bay drainage basin. The spatial variation of stream chemistry was closely related to differences in geology and land cover among the sampled watersheds. Some stream chemistry variables were strongly affected by geological settings in the watersheds while others were more influenced by land cover. The effects of land cover differed among chemical constituents and regions. Concentrations of Ca2+, Mg2+, pH, total alkalinity, and conductivity were mainly functions of carbonate bedrock, especially in the Great Valley. Nitrate‐N and total dissolved N were closely related to cropland and increased as the percentage of cropland increased. The rate of increase varied from region to region with the highest in the Piedmont. Na+ and Cl? were mainly affected by the percentage of developed area in a watershed, especially in the Coastal Plain and Piedmont. We observed no significant effects of region or land cover on species of phosphorus because samples were collected under base flow conditions and only dissolved forms were measured. Dissolved silicate (DSi) was not related to any other water chemistry variables. DSi increased as developed area decreased and cropland increased in the Coastal Plain, but these patterns were reversed in the Piedmont. There was no consistent pattern in the spatial variation of land cover effects on the reduced forms of N, dissolved organic P, dissolved organic matter, and K+.  相似文献   

17.
The curve number (CN) method is used to calculate runoff in many hydrologic models, including the Soil and Water Assessment Tool (SWAT). The CN method does not account for the spatial distribution of land cover types, an important factor controlling runoff patterns. The objective of this study was to empirically derive CN values that reflect the strategic placement of native prairie vegetation (NPV) within row crop agricultural landscapes. CNs were derived using precipitation and runoff data from a seven‐year period for 14 small watersheds in Iowa. The watersheds were planted with varying amounts of NPV located in different watershed positions. The least squares and asymptotic least squares methods (LSM) were used to derive CNs using an initial abstraction coefficient (λ) of 0.2 and 0.05. The CNs were verified using leave‐one‐out cross‐validation and adjustment for antecedent moisture conditions (AMC) was tested. The asymptotic method produced CN values for watersheds with NPV treatment that were 8.9 and 14.7% lower than watersheds with 100% row crop at λ = 0.2 and λ = 0.05, respectively. The derived CNs produced Nash‐Sutcliffe efficiency values ranging from 0.4 to 0.7 during validation. Our analyses show the CNs verified best for the asymptotic LSM, when using λ of 0.05 and adjusting for AMC. Further, comparison of derived CNs against an area weighted CN indicated that the placement of vegetation does impact the CN value. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

18.
ABSTRACT: Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes ‐ saturation excess and infiltration excess ‐ on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service‐Curve Number (SCS‐CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.  相似文献   

19.
/ Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients, much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils, RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater, sediment in surface runoff, and total N in both surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment, sustainability, and management are also discussed.KEY WORDS: Riparian forest buffers; Chesapeake Bay; Nonpoint source pollution; Nitrogen; Phosphorus; Sediment  相似文献   

20.
The Greater Vancouver area has undergone significant land use and land cover (LULC) change over the past several decades, often adversely affecting stream health and water quality, particularly in those areas that have undergone the most urbanization. In this study 30 years of historical LULC and water quality data were examined using GIS and statistical analysis to better understand these impacts and to help build a broader understanding of cause and effect relationships of changing LULC, especially since urbanization is increasingly occurring within sensitive watersheds at greater distances from the City of Vancouver. Urban, agriculture, and disturbed LULC data from 1976, 1986, and 2000 were examined within a number of watersheds and related to historical water quality data sampled from streams during similar time frames. Additional higher resolution 2006 LULC data from a smaller number of watersheds were then examined and compared to stream health data to investigate the sensitivity of LULC data resolution on monitoring watershed impact. While LULC impact can be clearly seen at both high and lower resolutions, issues of ambiguous land cover and land use designations can potentially affect the magnitude of the relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号