首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Remote national parks of the western U.S. and Alaska are not immune to contaminants of emerging concern. Semivolatile organic compounds (SOCs) such as pesticides and PCBs can selectively deposit from the atmosphere at higher rates in cold, high‐elevation and high‐latitude sites, potentially increasing risk to these ecosystems. In the environment, SOCs magnify up food chains and are known to increase health risks such as cancer and reproductive impairment. One hundred twenty‐eight fish in 8 national parks in Alaska and the western U.S. were analyzed for contaminant concentrations, assessed by region, and compared to human and wildlife health thresholds. SOC concentrations from an additional 133 fish from a previous study were also included, for a total of 31 water bodies sampled. PCBs, endosulfan sulfate, and p,p′‐DDE were among the most frequently detected contaminants. Concentrations of historic‐use pesticides dieldrin, p,p′‐DDE, and/or chlordanes in fish exceeded USEPA guidelines for human subsistence fish consumers and wildlife (kingfisher) health thresholds at 13 of 14 parks. Average concentrations in fish ranged from 0.6‐280 ng/g lipid (0.02‐7.3 μg/g ww). Contaminant loading was highest in fish from Alaskan and Sierra Nevada parks. Historic compounds were highest in Alaskan parks, while current‐use pesticides were higher in the Rockies and Sierra Nevada. This study provides a rigorous analysis of CECs in fish from national parks and identifies regions at potential risk.  相似文献   

2.
Abstract: Samples of ambient ground water were collected during 1985‐2002 from 3,498 wells in 98 aquifer studies throughout the United States. None of the sampled wells were selected because of prior knowledge of nearby contamination. Most of these samples were analyzed for 55 volatile organic compounds (VOCs) to characterize their national occurrence. Volatile organic compounds were found in samples collected from 90 of the 98 aquifer studies. Occurrence frequencies of one or more VOCs for the 98 aquifer studies ranged from 0 to about 77% at an assessment level of 0.2 microgram per liter (μg/l). The aquifer studies with the largest occurrence frequencies were in southern Florida, southern New York, southern California, New Jersey, and Nevada. Trihalomethanes and solvents were the most frequently occurring VOC groups. Of the 55 VOCs included in this assessment, 42 occurred in at least one sample at an assessment level of 0.2 μg/l. Chloroform, perchloroethene, and methyl tert‐butyl ether were the most frequently occurring VOCs. Many factors, such as the hydrogeology of the aquifer, use of VOCs, land use, and the transport and fate properties of VOCs, affect the occurrence of VOCs in ground water.  相似文献   

3.
The transport and fate of two plunging tributaries, Onondaga and Ninemile Creeks, in Onondaga Lake, New York, are quantified based on application of hydrodynamic/transport models. Short‐term transport is simulated with a three‐dimensional Estuary Lake and Coastal Ocean Model (ELCOM), while the longer term fate is represented by a previously validated one‐dimensional model (UFILS4). The validation of ELCOM for the vertical distribution of tributary inflow into the lake's water column is demonstrated for four dye tracer experiments. The models are applied for three years to represent the dynamics of transport and fate for the two tributaries, with ELCOM predictions serving as input for UFILS4. The models together quantify the distribution of these inflows between the upper mixed layer (UML) and stratified depths, and the subsequent transport from stratified depths to the UML by vertical mixing. Substantial short‐term variations are predicted for both tributaries in response to variability in hydrology and weather. Increased inflow to the UML is predicted for high runoff periods. The fraction of Ninemile Creek's inflow directly entering the UML is predicted to be 50% greater than for Onondaga Creek due to Ninemile's lower negative buoyancy. The plunging phenomenon has important water quality implications, by reducing the effective loading to the UML, particularly for constituents with large rates of loss/transformation relative to the rate of vertical transport from stratified depths.  相似文献   

4.
Moore, Richard B., Craig M. Johnston, Richard A. Smith, and Bryan Milstead, 2011. Source and Delivery of Nutrients to Receiving Waters in the Northeastern and Mid‐Atlantic Regions of the United States. Journal of the American Water Resources Association (JAWRA) 47(5):965‐990. DOI: 10.1111/j.1752‐1688.2011.00582.x Abstract: This study investigates nutrient sources and transport to receiving waters, in order to provide spatially detailed information to aid water‐resources managers concerned with eutrophication and nutrient management strategies. SPAtially Referenced Regressions On Watershed attributes (SPARROW) nutrient models were developed for the Northeastern and Mid‐Atlantic (NE US) regions of the United States to represent source conditions for the year 2002. The model developed to examine the source and delivery of nitrogen to the estuaries of nine large rivers along the NE US Seaboard indicated that agricultural sources contribute the largest percentage (37%) of the total nitrogen load delivered to the estuaries. Point sources account for 28% while atmospheric deposition accounts for 20%. A second SPARROW model was used to examine the sources and delivery of phosphorus to lakes and reservoirs throughout the NE US. The greatest attenuation of phosphorus occurred in lakes that were large relative to the size of their watershed. Model results show that, within the NE US, aquatic decay of nutrients is quite limited on an annual basis and that we especially cannot rely on natural attenuation to remove nutrients within the larger rivers nor within lakes with large watersheds relative to the size of the lake.  相似文献   

5.
Abstract: Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic Coastal Plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches. Sediments from two drainage ditches that had been monitored for seven years and had similar characteristics (flow, P loadings, sediment properties) were sampled (0‐5 cm) after one of the ditches had been dredged, which removed fine textured sediments (clay = 41%) with high organic matter content (85 g/kg) and exposed coarse textured sediments (clay = 15%) with low organic matter content (2.2 g/kg). Sediments were subjected to a three‐phase experiment (equilibrium, uptake, and release) in recirculating 10‐m‐long, 0.2‐m‐wide, and 5‐cm‐deep flumes to evaluate their role as sources and sinks of P. Under conditions of low initial P concentrations in flume water, sediments from the dredged ditch released 13 times less P to the water than did sediments from the ditch that had not been dredged, equivalent to 24 mg dissolved P. However, the sediments from the dredged ditch removed 19% less P (76 mg) from the flume water when it was spiked with dissolved P to approximate long‐term runoff concentrations. Irradiation of sediments to destroy microorganisms revealed that biological processes accounted for up to 30% of P uptake in the coarse textured sediments of the dredged ditch and 18% in the fine textured sediments of the undredged ditch. Results indicate that dredging of coastal plain drainage ditches can potentially impact the P buffering capacity of ditches draining agricultural soils with a high potential for P runoff.  相似文献   

6.
The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de‐trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small‐ and intermediate‐sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.  相似文献   

7.
Riparian buffers are known to mitigate hydrologic losses of nutrients and other contaminants as they exit agricultural fields. The vegetation of riparian buffers can also trap atmospheric contaminants, and these pollutants can subsequently be delivered via rain to the riparian buffer floor. These processes, however, are poorly understood especially for pesticide residues. Therefore, we conducted a four‐year study examining stemflow and throughfall to a riparian buffer which was adjacent a cultured Zea mays field treated with atrazine and metolachlor. Stemflow is rain contacting the tree canopy traveling down smaller to larger branches and down the tree trunk, whereas throughfall is rain that may or may not contact leaves and branches and reaches the earth. Stemflow concentrations of the herbicides were larger than throughfall concentrations and accounted for 5‐15% of the atrazine and 6‐66% of the metolachlor depositional fluxes under the canopy. Larger depositional fluxes were measured when leaves were more fully emerged and temperatures and humidity were elevated. Rain collected outside the riparian buffer on the field side and on the back side revealed the trees trapped the herbicide residues. Herbicide loading to the riparian buffer stream was found to be linked to tree canopy deposition and subsequent washoff during rain events. These results indicate that in agricultural areas canopy washoff can be an important source of pesticides to surface waters.  相似文献   

8.
Rebich, Richard A., Natalie A. Houston, Scott V. Mize, Daniel K. Pearson, Patricia B. Ging, and C. Evan Hornig, 2011. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico From Streams in the South‐Central United States. Journal of the American Water Resources Association (JAWRA) 47(5):1061‐1086. DOI: 10.1111/j.1752‐1688.2011.00583.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South‐Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas‐White‐Red, and Texas‐Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two‐thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%).  相似文献   

9.
Phosphorus export coefficients (kg/ha/yr) from selected land covers, also called phosphorus yields, tend to get smaller as contributing areas get larger because some of the phosphorus mobilized on local fields gets trapped during transport to regional watershed outlets. Phosphorus traps include floodplains, wetlands, and lakes, which can then become impaired by eutrophication. The Sunrise River watershed in east central Minnesota, United States, has numerous lakes impaired by excess phosphorus. The Sunrise is tributary to the St. Croix River, whose much larger watershed is terminated by Lake St. Croix, also impaired by excess phosphorus. To support management of these impairments at both local and regional scales, a Soil and Water Assessment Tool (SWAT) model of the Sunrise watershed was constructed to estimate load reductions due to selected best management practices (BMPs) and to determine how phosphorus export coefficients scaled with contributing area. In this study, agricultural BMPs, including vegetated filter strips, grassed waterways, and reduction of soil‐phosphorus concentrations reduced phosphorus loads by 4‐20%, with similar percentage reductions at field and watershed spatial scales. Phosphorus export coefficients from cropland in rotation with corn, soybeans, and alfalfa decreased as a negative power function of contributing area, from an average of 2.12 kg/ha/yr at the upland field scale (~0.6 km2) to 0.63 kg/ha/yr at the major river basin scale (20,000 km2). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

10.
石油开采中总烃对大气环境影响的研究   总被引:3,自引:0,他引:3  
对1992~1995年油气田污染源进行调查的结果表明:在总烃、二氧化硫、氮氧化物、一氧化碳和总悬浮物五种废气污染物中,总烃排放量占61.92%,是油田排放量最多的特征污染物。由于总烃主要产生在原油的开采和集输过程中,因此各油气田采用密闭集输流程,并在联合站设原油稳定装置和集气站,回收轻烃,大大减少了油气集输过程中烃类的排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号