首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

2.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   

3.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

4.
Best management practices (BMPs) are widely used to mitigate impacts of increased impervious surfaces on stormwater runoff. However, there is limited detailed and up‐to‐date information available on the cost of designing, constructing, and maintaining BMPs over their lifetime. The objective of this study is to analyze BMPs recently constructed by the Virginia Department of Transportation (VDOT) to quantify their total cost per pound of phosphorus removed annually. A motivating factor for the study is recent changes to regulatory guidelines in Virginia which allow for full or partial substitution of purchased nutrient credits in lieu of constructing onsite BMPs to achieve compliance with stormwater quality regulations. Results of the analysis of nine BMPs found their cost ranged from $20,100 to $74,900, in 2014 dollars, per pound ($44,313‐$165,126 per kg) of phosphorus removed. Based on these results and assuming current credit prices procured by VDOT, purchasing nutrient credits is a cost‐effective option for the agency, especially when factoring in the cost of additional right of way for the BMP. Based on this finding, we expect compliance with stormwater quality regulations through credit purchases to become more widely used in Virginia. Moving forward, we suggest more direct tracking of BMP costs to support comparisons between BMP costs across a range of types and conditions to credit purchases for meeting stormwater regulations.  相似文献   

5.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

6.
ABSTRACT: Wetlands that treat holding pond effluent can be designed to utilize the pond storage capacity to allow flexibility in system management. Management of a wetland as a sequencing batch reactor can simplify operation and control detention times, but little performance data on such systems are available. The objective of this study was to evaluate the batch reactor wetland concept by quantifying removal of chemical oxygen demand (COD), total suspended sediments (TSS), total nitrogen (TN), ammonium (NH4), nitrate (NO3), total phosphorus (TP), and orthophosphate (PO4) and by assessing the suitability of first‐order kinetics. Weekly samples were collected following batch loadings of wetland cells with high concentration or low concentration dairy holding pond wastewater during both fall and spring seasons. During three‐week batch periods without plants, overall mass removal averaged 54 percent for COD, 58 percent for TSS, 90 percent for TN, 72 percent for NH4, ‐54 percent for NO3, 38 percent for TP, and ‐8 percent for PO4. Best fit, first‐order kinetic rate constant (k) and background concentration (C*) for COD varied by season, with k = 0.024/d and C*= 0 mg/l in fall and k = 0.056/d and C*= 200 mg/l in spring. Ammonium exhibited a consistent C*= 0 mg/l but had variable rate constants of k = 0.121/d for low concentration treatments and k = 0.079/d for high concentration treatments. Using first‐order kinetics was also appropriate for TN, with k = 0.061/d and C*= 0 mg/l for all loadings and seasons, but was not consistently appropriate for TP or PO4. These results support the use of first‐order kinetics to describe treatment in batch reactor wastewater treatment wetlands without vegetation, perhaps during the establishment phase or in open water zones of vegetated wetlands. Further work is needed to assess the effects of vegetation.  相似文献   

7.
This paper describes the development of a methodology to theoretically assess the stormwater pollutant removal performances of structural best management practices (BMPs). The method combines the categorisation of the relative importance of the primary removal processes within 15 different BMPs with an evaluation of the ability of each process to remove a pollutant in order to generate a value representing the pollutant removal potential for each BMP. The methodology is demonstrated by applying it separately to a set of general water quality indicators (total suspended solids, biochemical and chemical oxygen demand, nitrates, phosphates and faecal coliforms) to produce a ranked list of BMP pollutant removal efficiencies. Given the limited amount of available monitoring data relating to the differential pollutant removal capabilities of BMPs, the resulting prioritization will support stakeholders in making urban drainage decisions from the perspective of pollutant removal. It can also provide inputs to existing urban hydrology models, which aim to predict the treatment performances of BMPs. The level of resilience of the proposed approach is tested using a sensitivity analysis and the limitations in terms of BMP design and application are discussed.  相似文献   

8.
Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.  相似文献   

9.
Two‐stage ditches represent an emerging management strategy in artificially drained agricultural landscapes that mimics natural floodplains and has the potential to improve water quality. We assessed the potential for the two‐stage ditch to reduce sediment and nutrient export by measuring water column turbidity, nitrate (NO3?), ammonium (NH4+), and soluble reactive phosphorus (SRP) concentrations, and denitrification rates. During 2009‐2010, we compared reaches with two‐stage floodplains to upstream reaches with conventional trapezoid design in six agricultural streams. At base flow, these short two‐stage reaches (<600 m) reduced SRP concentrations by 3‐53%, but did not significantly reduce NO3? concentrations due to very high NO3? loads. The two‐stage also decreased turbidity by 15‐82%, suggesting reduced suspended sediment export during floodplain inundation. Reach‐scale N‐removal increased 3‐24 fold during inundation due to increased bioreactive surface area with high floodplain denitrification rates. Inundation frequency varied with bench height, with lower benches being flooded more frequently, resulting in higher annual N‐removal. We also found both soil organic matter and denitrification rates were higher on older floodplains. Finally, influence of the two‐stage varied among streams and years due to variation in stream discharge, nutrient loads, and denitrification rates, which should be considered during implementation to optimize potential water quality benefits.  相似文献   

10.
A novel process for a simultaneous removal of ammonia and organics was developed on the basis of ion exchange and biological reactions. From batch experiments, it was found out that NH4+ could be removed effectively by combining cation exchange and biological nitrification showing 0.98 mg N/m2?s of a maximum flux. On the other hand, the removal of NO3 was 3.5 times faster than NH4+ and the maximum flux was calculated to be 3.4 mg N/m2?s. The systems for NH4+ and NO3 removal were combined for establishing the IEBR process. When the process was operated in a continuous mode, approximately 95.8% of NH4+ was removed showing an average flux of 0.22 mg N/m2·s. The removal efficiency of total nitrogen was calculated as 94.5% whereas that of organics was 99.5%. It was concluded that the IEBR process would be effectively used for a simultaneous removal of NH4+ and organics.  相似文献   

11.
Tile drainage significantly alters flow and nutrient pathways and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but few applications have evaluated the model's ability to simulate pathway‐specific flow components or nitrate‐nitrogen (NO3‐N) concentrations in tile‐drained watersheds at the daily time step. The objectives of this study were to develop and calibrate SWAT models for small, tile‐drained watersheds, evaluate model performance for simulation of flow components and NO3‐N concentration at daily intervals, and evaluate simulated soil‐nitrogen dynamics. Model evaluation revealed that it is possible to meet accepted performance criteria for simulation of monthly total flow, subsurface flow (SSF), and NO3‐N loads while obtaining daily surface runoff (SURQ), SSF, and NO3‐N concentrations that are not satisfactory. This limits model utility for simulating best management practices (BMPs) and compliance with water quality standards. Although SWAT simulates the soil N‐cycle and most predicted fluxes were within ranges reported in agronomic studies, improvements to algorithms for soil‐N processes are needed. Variability in N fluxes is extreme and better parameterization and constraint, through use of more detailed agronomic data, would also improve NO3‐N simulation in SWAT. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

12.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

13.
Continued public support for U.S. taxpayer funded programs aimed at reducing agricultural pollutants depends on clear demonstrations of water quality improvements. The objective of this research was to determine if implementation of agricultural best management practices (BMPs) in the Goodwater Creek Experimental Watershed (GCEW) resulted in changes to atrazine and nitrate (NO3–N) loads during storm events. An additional objective was to estimate future monitoring periods necessary to detect a 5, 10, 20, and 25% reduction in atrazine and NO3–N event load. The GCEW is a 73 km2 watershed located in northcentral Missouri, USA. Linear regressions and Akaike Information Criteria were used to determine if reductions in atrazine and NO3–N event loads occurred as BMPs were implemented. No effects due to any BMP type were indicated for the period of record. Further investigation of event sampling from the long-term GCEW monitoring program indicated errors in atrazine load calculations may be possible due to pre-existing minimum threshold levels used to trigger autosampling and sample compositing. Variation of event loads was better explained by linear regressions for NO3–N than for atrazine. Decommissioning of upstream monitoring stations during the study period represented a missed opportunity to further explain variation of event loads at the watershed outlet. Atrazine requires approximately twice the monitoring period relative to NO3–N to detect future reductions in event load. Appropriate matching of pollutant transport mechanisms with autosampling protocols remains a critical information need when setting up or adapting watershed monitoring networks aimed at detecting watershed-scale BMP effects.  相似文献   

14.
Two kinds of agricultural Best Management Practices (BMPs) were examined with respect to cost-effectiveness (CE) in reducing sediment, nitrates-nitrogen (NO3–N) and total phosphorus (TP) losses to surface waters of the Arachtos catchment in Western Greece. The establishment of filter strips at the edge of fields and a non-structural measure, namely fertilization reduction in alfalfa, combined with contour farming and zero-tillage in corn and reduction of animal numbers in pastureland, were evaluated. The Soil and Water Assessment Tool (SWAT) model was used as the non-point-source (NPS) estimator, while a simple economic component was developed estimating BMP implementation cost as the mean annual expenses needed to undertake and operate the practice for a 5-year period. After each BMP implementation, the ratio of their CE in reducing pollution was calculated for each Hydrologic Response Unit (HRU) separately, for each agricultural land use type entirely and for the whole catchment. The results at the HRU scale are presented comprehensively on a map, demonstrating the spatial differentiation of CE ratios across the catchment that enhances the identification of locations where each BMP is most advisable for implementation. Based on the analysis, a catchment management solution of affordable total cost would include the expensive measure of filter strips in corn and only in a small number of pastureland fields, in combination with the profitable measure of reducing fertilization to alfalfa fields. When examined for its impact on river loads at the outlet, the latter measure led to a 20 tn or 8% annual decrease of TP from the baseline with savings of 15€/kg of pollutant reduction. Filter strips in corn fields reduced annual sediments by 66 Ktn or 5%, NO3–N by 71 tn or 9.5% and TP by 27 tn or 10%, with an additional cost of 3.1 €/tn, 3.3 €/kg and 8.1 €/kg of each pollutant respectively. The study concludes that considerable reductions of several pollutant types at the same time can be achieved, even at low total cost, by combining targeted BMP implementation strategies only in small parts of the catchment, also enabling policy makers to take local socio-economic constraints into consideration. The methodology and the results presented aim to facilitate decision making for a cost-effective management of diffuse pollution by enabling modelers and researchers to make rapid and reliable BMP cost estimations and thus being able to calculate their CE at the local level in order to identify the most suitable areas for their implementation.  相似文献   

15.
Hancock, Gregory S., Jonathan W. Holley, and Randolph M. Chambers, 2010. A Field-Based Evaluation of Wet Retention Ponds: How Effective Are Ponds at Water Quantity Control? Journal of the American Water Resources Association (JAWRA) 46(6):1145–1158. DOI: 10.1111/j.1752-1688.2010.00481.x Abstract: Wet retention ponds are widely used structural stormwater best management practices (BMPs) with the primary goals of reducing peak flows and extending flow duration. Despite widespread use, few field-based studies have evaluated the success of wet retention ponds at meeting these goals. We determined pond elevation, flow rate, and pond volume over four years in five suburban watersheds in James City County, Virginia. We selected five ponds designed under regulations requiring a 24 hour inflow-to-outflow centroid lag time for a one year, 24 hour design storm. We used pressure transducers to measure pond water surface elevation at 5 min intervals, and calculated pond outflow and volume using rating curves obtained from site stormwater management plans (SWMPs). Peak inflows, peak outflows, and runoff ratios frequently exceeded SWMP calculations in measured events. Four ponds never achieved the required 24 hour inflow-to-outflow centroid lag for storms similar to the one year, 24 hour storm. These BMPs fail to achieve regulatory goals for channel protection because of regulatory loopholes, underprediction of rainfall intensity, unrealistic predictions of postdevelopment flows in SWMPs, and the inability of wet retention ponds to reduce overall runoff volume. While specific to one locality, the shortcomings highlighted suggest similar field-based assessments of retention pond performance are needed in other locations.  相似文献   

16.
This unique study evaluates the cumulative 16‐year lifetime performance of a wetland retention basin designed to treat stormwater runoff. Sediment cores were extracted prior to basin excavation and restoration to evaluate accretion rates and the origin of materials, retention characteristics of fine particulate matter, and overall pollutant removal efficiency. The sediment and organic layers together accreted 3.2 cm of depth per year, and 7.0 kg/m2/yr of inorganic material. Average annual accretion rates in g/m2/yr were as follows: C, 280; N, 17.7; P, 3.74; S, 3.80; Fe, 194; Mn, 2.68; Ca, 30.8; Mg, 30.7; K, 12.2; Na, 2.54; Zn, 0.858; Cu, 0.203; and B, 0.03. The accretion of C, N, P and sediment was comparable to nonwastewater treatment wetlands, overall, and relatively efficient for stormwater treatment wetlands. Comparison of particle size distribution between sediment cores and suspended solids in stormwater runoff indicated the wetland was effective at removing fine particles, with sediment cores containing 25% clay and 56% silt. A majority of the accretion of most metals and P could be attributed to efficient trapping of allochthonous material, while over half the accretion of C and N could be attributed to accumulation of autochthonous organic matter. Stormwater treatment was shown to be effective when physical properties of a retention basin are combined with the biological processes of a wetland, although sediment accretion can be relatively rapid.  相似文献   

17.
Urea‐N is a component of bioavailable dissolved organic nitrogen (DON) that contributes to coastal eutrophication. In this study, we assessed urea‐N in baseflow across land cover gradients and seasons in the Manokin River Basin on the Delmarva Peninsula. From March 2010 to June 2011, we conducted monthly sampling of 11 streams (4 tidal and 7 nontidal), 2 wastewater treatment plants, an agricultural drainage ditch, and groundwater underlying a cropped field. At each site, we measured urea‐N, DON, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NO3?‐N, and NH4+‐N. In general, urea‐N comprised between 1% and 6% of TDN, with the highest urea‐N levels in drainage ditches (0.054 mg N/L) and wetland‐dominated streams (0.035–0.045 mg N/L). While urea‐N did not vary seasonally in tidal rivers, nontidal streams saw distinct urea‐N peaks in summer (0.038 mg N/L) that occurred several months after cropland fertilization in spring. Notably, the proportion of wetlands explained 78% of the variance in baseflow urea‐N levels across the Manokin watershed. In wetland‐dominated basins, we found urea‐N was positively related to water temperature and negatively related to DOC:DON ratios, indicating short‐term urea‐N dynamics at baseflow were more likely influenced by instream and wetland‐driven processes than by recent agricultural urea‐N inputs. Findings demonstrate important controls of wetlands on baseflow urea‐N concentrations in mixed land‐use basins.  相似文献   

18.
Riparian buffers have been used for many years as a best management practice to decrease the effects of nonpoint pollution from watersheds. The NC Conservation Reserve Enhancement Program (NC CREP) has established buffers to treat groundwater nitrate‐nitrogen (NO3?‐N) from agricultural sources in multiple river basins. A maturing 46 m wide riparian buffer enrolled in NC CREP was studied to determine its effectiveness in reducing groundwater NO3?‐N concentrations from a cattle pasture fertilized with poultry litter. Three monitoring blocks that included groundwater quality wells, water table wells, and soil redox probes, were established in the buffer. NO3?‐N concentrations decreased significantly across the buffer in all of the monitoring blocks with mean reductions of 76‐92%. Many biological processes, including denitrification and plant uptake, may have been responsible for the observed NO3?‐N reductions but could not be differentiated in this study. However, mean reductions in Cl? concentrations ranged from 48‐65% through the blocks, which indicated that dilution was an important factor in observed NO3?‐N reductions. These findings should be carefully considered for future buffer enrollments when assigning nitrogen removal credits.  相似文献   

19.
This article reviews the key, cross‐cutting findings concerning watershed‐scale cost‐effective placement of best management practices (BMPs) emerging from the National Institute of Food and Agriculture Conservation Effects Assessment Project (CEAP) competitive grants watershed studies. The synthesis focuses on two fundamental aspects of the cost‐effectiveness problem: (1) how to assess the location‐ and farmer‐specific costs of BMP implementation, and (2) how to decide on which BMPs need to be implemented and where within a given watershed. Major lessons learned are that (1) data availability remains a significant limiting factor in capturing within‐watershed BMP cost variability; (2) strong watershed community connections help overcome the cost estimation challenges; (3) detailing cost components facilitates the transferability of estimates to alternative locations and/or economic conditions; and (4) implicit costs vary significantly across space and farmers. Furthermore, CEAP studies showed that (5) evolutionary algorithms provide workable ways to identify cost‐effective BMP placements; (6) tradeoffs between total conservation costs and watershed‐scale cost‐effective water quality improvements are commonly large; (7) quality baseline information is essential to solving cost‐effectiveness problem; and (8) systemic and modeling uncertainties alter cost‐effective BMP placements considerably.  相似文献   

20.
ABSTRACT: A “user-friendly” computer program has been developed for application in personal computers for preliminary design, evaluation, and cost effectiveness analysis of various best management practice (BMP) measures to control stormwater quantity and quality. The algorithms utilize the SCS TR-55 method for calculating runoff hydrographs for a single storm event and a first order pollutant washoff equation to generate pollutographs. Sensitivity analyses based on different policy scenarios is performed on a hypothetical watershed for the purpose of illustration. Three types of BMP measures, namely detention ponds (dry, wet, and extended wet ponds), infiltration trenches, and porous pavements are considered. It is found that the extended wet ponds have the best cost effective performance of the measures evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号